This is documentation for an old release of NumPy (version 1.10.1). Read this page in the documentation of the latest stable release (version > 1.17).
numpy.common_type¶
- numpy.common_type(*arrays)[source]¶
Return a scalar type which is common to the input arrays.
The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays. If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point dtype.
All input arrays can be safely cast to the returned dtype without loss of information.
Parameters: array1, array2, ... : ndarrays
Input arrays.
Returns: out : data type code
Data type code.
See also
Examples
>>> np.common_type(np.arange(2, dtype=np.float32)) <type 'numpy.float32'> >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2)) <type 'numpy.float64'> >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0])) <type 'numpy.complex128'>