numpy.ma.masked_array.filled¶
- masked_array.filled(fill_value=None)[source]¶
Return a copy of self, with masked values filled with a given value.
Parameters: fill_value : scalar, optional
The value to use for invalid entries (None by default). If None, the fill_value attribute of the array is used instead.
Returns: filled_array : ndarray
A copy of self with invalid entries replaced by fill_value (be it the function argument or the attribute of self.
Notes
The result is not a MaskedArray!
Examples
>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999) >>> x.filled() array([1, 2, -999, 4, -999]) >>> type(x.filled()) <type 'numpy.ndarray'>
Subclassing is preserved. This means that if the data part of the masked array is a matrix, filled returns a matrix:
>>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]]) >>> x.filled() matrix([[ 1, 999999], [999999, 4]])