SciPy

numpy.ma.masked_array.filled

masked_array.filled(fill_value=None)[source]

Return a copy of self, with masked values filled with a given value.

Parameters:

fill_value : scalar, optional

The value to use for invalid entries (None by default). If None, the fill_value attribute of the array is used instead.

Returns:

filled_array : ndarray

A copy of self with invalid entries replaced by fill_value (be it the function argument or the attribute of self.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
>>> x.filled()
array([1, 2, -999, 4, -999])
>>> type(x.filled())
<type 'numpy.ndarray'>

Subclassing is preserved. This means that if the data part of the masked array is a matrix, filled returns a matrix:

>>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.filled()
matrix([[     1, 999999],
        [999999,      4]])