numpy.ma.dot¶
- numpy.ma.dot(a, b, strict=False)[source]¶
Return the dot product of two arrays.
Note
Works only with 2-D arrays at the moment.
This function is the equivalent of numpy.dot that takes masked values into account, see numpy.dot for details.
Parameters: a, b : ndarray
Inputs arrays.
strict : bool, optional
Whether masked data are propagated (True) or set to 0 (False) for the computation. Default is False. Propagating the mask means that if a masked value appears in a row or column, the whole row or column is considered masked.
See also
- numpy.dot
- Equivalent function for ndarrays.
Examples
>>> a = ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]]) >>> b = ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]]) >>> np.ma.dot(a, b) masked_array(data = [[21 26] [45 64]], mask = [[False False] [False False]], fill_value = 999999) >>> np.ma.dot(a, b, strict=True) masked_array(data = [[-- --] [-- 64]], mask = [[ True True] [ True False]], fill_value = 999999)