# scipy.sparse.linalg.onenormest¶

scipy.sparse.linalg.onenormest(A, t=2, itmax=5, compute_v=False, compute_w=False)[source]

Compute a lower bound of the 1-norm of a sparse matrix.

New in version 0.13.0.

Parameters : A : ndarray or other linear operator A linear operator that can be transposed and that can produce matrix products. t : int, optional A positive parameter controlling the tradeoff between accuracy versus time and memory usage. Larger values take longer and use more memory but give more accurate output. itmax : int, optional Use at most this many iterations. compute_v : bool, optional Request a norm-maximizing linear operator input vector if True. compute_w : bool, optional Request a norm-maximizing linear operator output vector if True. est : float An underestimate of the 1-norm of the sparse matrix. v : ndarray, optional The vector such that ||Av||_1 == est*||v||_1. It can be thought of as an input to the linear operator that gives an output with particularly large norm. w : ndarray, optional The vector Av which has relatively large 1-norm. It can be thought of as an output of the linear operator that is relatively large in norm compared to the input.

Notes

This is algorithm 2.4 of [1].

In [2] it is described as follows. “This algorithm typically requires the evaluation of about 4t matrix-vector products and almost invariably produces a norm estimate (which is, in fact, a lower bound on the norm) correct to within a factor 3.”

References

 [R181] Nicholas J. Higham and Francoise Tisseur (2000), “A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra.” SIAM J. Matrix Anal. Appl. Vol. 21, No. 4, pp. 1185-1201.
 [R182] Awad H. Al-Mohy and Nicholas J. Higham (2009), “A new scaling and squaring algorithm for the matrix exponential.” SIAM J. Matrix Anal. Appl. Vol. 31, No. 3, pp. 970-989.

#### Previous topic

scipy.sparse.linalg.expm_multiply

#### Next topic

scipy.sparse.linalg.spsolve