scipy.stats.poisson = <scipy.stats._discrete_distns.poisson_gen object at 0x2b1124003750>[source]

A Poisson discrete random variable.

As an instance of rv_discrete class, poisson object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.


The probability mass function for poisson is:

poisson.pmf(k) = exp(-mu) * mu**k / k!

for k >= 0.

poisson takes mu as shape parameter.


>>> from scipy.stats import poisson
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> mu = 0.6
>>> mean, var, skew, kurt = poisson.stats(mu, moments='mvsk')

Display the probability mass function (pmf):

>>> x = np.arange(poisson.ppf(0.01, mu),
...               poisson.ppf(0.99, mu))
>>> ax.plot(x, poisson.pmf(x, mu), 'bo', ms=8, label='poisson pmf')
>>> ax.vlines(x, 0, poisson.pmf(x, mu), colors='b', lw=5, alpha=0.5)

Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pmf:

>>> rv = poisson(mu)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
...         label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)

(Source code)


Check accuracy of cdf and ppf:

>>> prob = poisson.cdf(x, mu)
>>> np.allclose(x, poisson.ppf(prob, mu))

Generate random numbers:

>>> r = poisson.rvs(mu, size=1000)


rvs(mu, loc=0, size=1, random_state=None) Random variates.
pmf(x, mu, loc=0) Probability mass function.
logpmf(x, mu, loc=0) Log of the probability mass function.
cdf(x, mu, loc=0) Cumulative density function.
logcdf(x, mu, loc=0) Log of the cumulative density function.
sf(x, mu, loc=0) Survival function (1 - cdf — sometimes more accurate).
logsf(x, mu, loc=0) Log of the survival function.
ppf(q, mu, loc=0) Percent point function (inverse of cdf — percentiles).
isf(q, mu, loc=0) Inverse survival function (inverse of sf).
stats(mu, loc=0, moments='mv') Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(mu, loc=0) (Differential) entropy of the RV.
expect(func, mu, loc=0, lb=None, ub=None, conditional=False) Expected value of a function (of one argument) with respect to the distribution.
median(mu, loc=0) Median of the distribution.
mean(mu, loc=0) Mean of the distribution.
var(mu, loc=0) Variance of the distribution.
std(mu, loc=0) Standard deviation of the distribution.
interval(alpha, mu, loc=0) Endpoints of the range that contains alpha percent of the distribution

Previous topic


Next topic