SciPy

scipy.stats.mstats.describe

scipy.stats.mstats.describe(a, axis=0, ddof=0)[source]

Computes several descriptive statistics of the passed array.

Parameters:

a : array_like

Data array

axis : int or None, optional

Axis along which to calculate statistics. Default 0. If None, compute over the whole array a.

ddof : int, optional

degree of freedom (default 0); note that default ddof is different from the same routine in stats.describe

Returns:

n : int

(size of the data (discarding missing values)

mm : (int, int)

min, max

arithmetic mean : float

unbiased variance : float

biased skewness : float

biased kurtosis : float

Examples

>>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1])
>>> describe(ma)
(array(3),
 (0, 2),
 1.0,
 1.0,
 masked_array(data = 0.0,
             mask = False,
       fill_value = 1e+20)
,
 -1.5)