scipy.stats.beta = <scipy.stats._continuous_distns.beta_gen object at 0x2b0de298b890>[source]

A beta continuous random variable.

As an instance of the rv_continuous class, beta object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.


The probability density function for beta is:

                    gamma(a+b) * x**(a-1) * (1-x)**(b-1)
beta.pdf(x, a, b) = ------------------------------------

for 0 < x < 1, a > 0, b > 0, where gamma(z) is the gamma function (scipy.special.gamma).

beta takes a and b as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, beta.pdf(x, a, b, loc, scale) is identically equivalent to beta.pdf(y, a, b) / scale with y = (x - loc) / scale.


>>> from scipy.stats import beta
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> a, b = 2.31, 0.627
>>> mean, var, skew, kurt = beta.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(beta.ppf(0.01, a, b),
...                 beta.ppf(0.99, a, b), 100)
>>> ax.plot(x, beta.pdf(x, a, b),
...        'r-', lw=5, alpha=0.6, label='beta pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = beta(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = beta.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], beta.cdf(vals, a, b))

Generate random numbers:

>>> r = beta.rvs(a, b, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)

(Source code)



rvs(a, b, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative density function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, b, loc=0, scale=1) Survival function (1 - cdf — sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf — percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments='mv') Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, b, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution.
median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution

Previous topic


Next topic