SciPy Reference Guide
Release 1.8.0

Written by the SciPy community

May 20, 2022

CONTENTS

1 Getting started 5
1.1 Installation 0 L e e e e e e e e e e e e 5
1.2 Tutorials e e e e e e e e e e e e e e 6

2 SciPy User Guide 7
2.1 Introduction e e e e e e e e e e e e e 7

2.1.1 SciPy Organization it iieee 8
2.1.2 Finding Documentation e e 8
2.2 Special functions (SCipy.special) . . . v v v i i e e e e e e e e e e 10
2.2.1 Bessel functions of real order(jv, Jn_zeros). i i i e e e e 10
2.2.2 Cython Bindings for Special Functions (scipy.special.cython_special). 11
2.23 Functions notin scipy.special e e e 14
2.3 Integration (scipy.integrate) 14
2.3.1 General integration (qUad) oo e i e e e e e e e e 15
2.3.2 General multiple integration (dblquad, tplquad,nquad)« v v v v v . 17
233 Gaussian quadratureo i e e e e e e e e e e e e e e e e e e e 18
234 RombergIntegration L e 18
2.3.5 Integratingusing Samples oL e e e 18
2.3.6 Faster integration using low-level callback functions 19
2.3.7 Ordinary differential equations (SOLvVe_1iVD) + « v v v v v v v v v i e e e e e 20
2.4 Optimization (SCipy.optimize) . . . v v v v v i it e e e e e e e e e e e e e 25
2.4.1 Unconstrained minimization of multivariate scalar functions (minimize) 27
2.4.2 Constrained minimization of multivariate scalar functions (minimize) 33
2.4.3 Global optimization e e e e e e e 37
2.4.4 Least-squares minimization (1east_SQUares) . . .« v v v v v v v v v v v e e e 40
2.4.5 Univariate function minimizers (minimize_scalar)« v v v v v v v v v v v v v 43
2.4.6 Custom MINIMIZETS v v v v v v v e 43
247 Rootfinding e 45
2.4.8 Linear programming (Linprog) . . .« ¢ v v v vttt e e e e e e e e e e e e 51
249 Assignmentproblems L. e 54
2.5 Interpolation (scipy.interpolate) i i it e e e e 55
2.5.1 I-Dinterpolation (interpld) v v v v it e e e e e e e e 56
2.5.2 Multivariate data interpolation (griddata) oo 58
2.5.3 Spline interpolation L. L e e e e 60
2.5.4 Using radial basis functions for smoothing/interpolation 68
2.6 Fourier Transforms (scipy.fft) 0 o 0 e e 70
2.6.1 FastFourier transforms e e 71
2.6.2 Discrete Cosine Transforms e e 76
2.6.3 Discrete Sine Transforms L. e e e e 79
2.6.4 FastHankel Transform e 81

2.6.5 References e e e e 81

2.7 Signal Processing (scipy.signal) . . . v v v v i i it i e e e e e e e e e 81
271 B-SpNes e e e e e e e e e e e e 81

272 Filtering L. e e 84

273 Spectral Analysis L. e e e e e 97

274 Detrend e e e 101

2.8 Linear Algebra (scipy.1inald) . . . v v v v v v i i e e e e e e e e e e e e 102
2.8.1 scipy.inalg vsnumpylinalg oL o 102

2.8.2 numpy.matrix vs 2-D numpy.ndarray Lo o 103

2.83 BaSiCTOULNES ¢ v v v ot e e et e e e e e e e e e e e e e e e e e e 104

2.8.4 Decompositions i e e e e e e e e e e e e e 109

2.8.5 Matrix functions e e e e e e 113

2.8.6 Special MatriCes i i e e e e e e e e e e e e e e e 115

2.9 Sparse eigenvalue problems with ARPACK o o, 116
2.9.1 IntroduCtion v it e e e e e e e e e e e e e e e 116

29.2 Basicfunctionality e e 116

29.3 Shift-invertmode L. e e e e e 117

2.94 Examples e e e e e e e e e e e e e e 117

2.9.5 Useof LinearOperator o o i i it v ittt e e e 119

2.9.6 References e e e e e e e 121

2.10 Compressed Sparse Graph Routines (scipy.sparse.csgraph) 121
2.10.1 Example: Word Ladders L 121

2.11 Spatial data structures and algorithms (scipy.spatial) o v i v i v v v v v .. 124
2.11.1 Delaunay triangulations Lt e e e e e e e e e e e e e 124
2112 Convex hulls o L e e e e e e 126
2.11.3 Voronoi dia@rams oo i e e e e e e e e e e e e e e e e e 127

2.12 Statistics (scipy.stats) o i e e 131
2.12.1 Introduction e e e e e e e 131
2.12.2 Randomvariables L. 225
2.12.3 Building specific distributions L. o L 232
2.12.4 Analysingonesample Ll e 235
2.12.5 Comparing twosampleso e 239
2.12.6 Kernel density estimation L i e e e e e e e e 240
2127 Quasi-Monte Carlo e e e e e e 253

2.13 Multidimensional image processing (scipy.ndimage) v v vt e e e 260
2.13.1 Introduction e e e e e e 260
2.13.2 Properties shared by all functions oL o Lo 260
2.13.3 Filterfunctions L. e e e e e e 261
2.13.4 Interpolation functions e e e e e e e e e e e 270
2.13.5 Morphology e e e e e e e 274
2.13.6 Distance transforms L. e e e e e 277
2.13.7 Segmentationand labeling oL 278
2.13.8 Object MEASUTCMENLS . . « & . v v v v v e e e e e e e e e e e e e e e e 281
2.13.9 Extending scipy.ndimageinC e e e 283
2.13.10 References o oo e e e e e e 289

214 FileIO (SCIPY . 10) « v v v v e e e e e e e e e e e e e e e e 289
2.14.1 MATLABAiles e e e e 289
2,142 IDLAles o o o e e e 294
2.143 Matrix Marketfiles L 294
2.144 Wavsound files (scipy.io.wavfile) v i i i i i it e e e 294
2145 Arfffiles (scipy.i0.arff) . . . o o i e e e e e e e e e 294
2.14.6 Netedf oL e 295

3 SciPy API 297

3.1
3.2
33
34

Importing from SciPy . .

Guidelines for importing functions from SciPy L L oo

API definition

Developer Documentation

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

SciPy Code of Conduct .
Ways to Contribute . . .
Development environment
SciPy contributor guide .
SciPy Roadmap
Detailed SciPy Roadmap
Toolchain Roadmap . .

quickerstart guide (Linuxand Mac)

SciPy Core Developer Guide o e e

Deciding on new features

SciPy API Development Guide o . e e e e e e e e e

SciPy Project Governance
Development environment
Development environment
Development workflow .
PEPS8 and SciPy
Rendering Documentation

quickstart guide (macOS) Lo o
quickstart guide (Ubuntu) oL

withSphinx e

Running SciPy Tests Locally e

Benchmarking SciPy with
Adding Cython to SciPy
Public Cython APIs . . .

airspeed velocity L. oL Lo e

Adding New Methods, Functions, and Classes v i v i v it e e

Continuous Integration .

Release Notes

5.1
52
53
5.4
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24

SciPy 1.8.0 Release Notes
SciPy 1.7.3 Release Notes
SciPy 1.7.2 Release Notes
SciPy 1.7.1 Release Notes
SciPy 1.7.0 Release Notes
SciPy 1.6.3 Release Notes
SciPy 1.6.2 Release Notes
SciPy 1.6.1 Release Notes
SciPy 1.6.0 Release Notes
SciPy 1.5.4 Release Notes
SciPy 1.5.3 Release Notes
SciPy 1.5.2 Release Notes
SciPy 1.5.1 Release Notes
SciPy 1.5.0 Release Notes
SciPy 1.4.1 Release Notes
SciPy 1.4.0 Release Notes
SciPy 1.3.3 Release Notes
SciPy 1.3.2 Release Notes
SciPy 1.3.1 Release Notes
SciPy 1.3.0 Release Notes
SciPy 1.2.3 Release Notes
SciPy 1.2.2 Release Notes
SciPy 1.2.1 Release Notes
SciPy 1.2.0 Release Notes

3065
3065
3067
3071
3071
3073
3074
3081
3086
3087
3098
3101
3106
3108
3110
3115
3115
3116
3118
3120
3122
3124
3126

3129
3129
3152
3153
3155
3156
3181
3182
3183
3185
3208
3209
3211
3213
3214
3242
3243
3267
3268
3269
3271
3285
3287
3288
3289

5.25 SciPy I.1.0Release NOteS o v v i i e e e e e e e e e e e e e 3306
5.26 SciPy 1.0.1 Release NOteS o o v i i e e e e e e e e e e e e e 3322
527 SciPy 1.0.O0Release Notes i e e e 3324
528 SciPy0.19.1 Release Notes e 3345
529 SciPy 0.19.0Release NOtes o v v i i i e e e e e e 3346
530 SciPyO.18.1 Release Notes i i i e e e e 3365
5.31 SciPy 0.18.0Release NOtes o v i it e e e e e e e e e e e e e e 3366
5.32 SciPy 0.17.1 Release NOtes o v i i e e e e e e e e e e e e e 3385
533 SciPy0.17.0Release Notes e 3386
5.34 SciPy0.16.1 Release Notes e 3402
535 SciPy0.16.0Release Notes o i i e e 3403
5.36 SciPy 0.15.1 Release NOtes ot i it e e e e e e e e e e e e 3419
5.37 SciPy 0.15.0 Release NOtes o v i it e e e e e e e e e e e 3419
538 SciPy0.14.1 Release Notes e e 3435
539 SciPy0.14.0Release Notes e 3435
540 SciPy0.13.2Release Notes o i i i e e 3447
541 SciPyO.13.1 Release Notes o i i e e e e e 3447
542 SciPy0.13.0Release NOtes o v i i e e e e e e e e e e e e 3448
543 SciPy 0.12.1 Release NOtes o o v i i e e e e e e e e e e 3455
544 SciPy0.12.0Release Notes e 3455
545 SciPy 0.11.0Release NOtes o o v i i i i e e e e e 3461
546 SciPy0.10.1 Release Notes o i i i s e e 3467
547 SciPy0.10.0 Release NOtes o v i it e e e e e e e e e e e e e 3468
548 SciPy 0.9.0Release NOtes o o i i e e e e e e e 3472
549 SciPy0.8.0Release Notes e e 3476
5.50 SciPy0.7.2Release Notes e 3481
551 SciPy0.7.1 Release NOtes i it s e e e e 3482
5.52 SciPy 0.7.0 Release NOtES o v v i i e e e e e e e e e e e e e 3484
Bibliography 3491
Index 3537

SciPy Reference Guide, Release 1.8.0

Date: May 20, 2022 Version: 1.8.0
Download documentation: https://docs.scipy.org/doc/
Useful links: Install | Source Repository | Issues & Ideas | Q&A Support | Mailing List

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering.

Getting started

New to SciPy? Check out the getting started guides. They contain an introduction to SciPy’ main concepts and links to
additional tutorials.

To the getting started guides

CONTENTS 1

https://docs.scipy.org/doc/
https://scipy.org/install/
https://github.com/scipy/scipy
https://github.com/scipy/scipy/issues
https://stackoverflow.com/questions/tagged/scipy
https://mail.python.org/mailman3/lists/scipy-dev.python.org/

SciPy Reference Guide, Release 1.8.0

User guide

The user guide provides in-depth information on the key concepts of SciPy with useful background information and
explanation.

To the user guide

2 CONTENTS

SciPy Reference Guide, Release 1.8.0

API reference

The reference guide contains a detailed description of the SciPy API. The reference describes how the methods work and
which parameters can be used. It assumes that you have an understanding of the key concepts.

To the reference guide

CONTENTS 3

SciPy Reference Guide, Release 1.8.0

Developer guide

Saw a typo in the documentation? Want to improve existing functionalities? The contributing guidelines will guide you
through the process of improving SciPy.

To the development guide

4 CONTENTS

CHAPTER
ONE

GETTING STARTED

1.1 Installation

Working with conda?

SciPy is part of the Anaconda distribution and can be installed with Anaconda or Miniconda:

conda install scipy

Prefer pip?
SciPy can be installed via pip from PyPI.

pip install scipy

In-depth instructions?
Installing a specific version? Installing from source? Check the advanced installation page.

Learn more

1.1.1 Installing and upgrading

Information on how to install SciPy and/or the SciPy Stack (a larger set of packages for scientific computing with Python)
can be found at https://scipy.org/install/.

It is recommended that users use a scientific Python distribution or binaries for their platform. If building from source is
required, documentation about that can be found at building/index.

If you already have SciPy installed and want to upgrade to a newer version, use the same install mechanism as you have
used to install SciPy before. Before upgrading to a newer version, it is recommended to check that your own code does
not use any deprecated SciPy functionality. To do so, run your code with python -Wd.

https://docs.continuum.io/anaconda/
https://pypi.org/project/scipy
https://scipy.org/install/

SciPy Reference Guide, Release 1.8.0

1.2 Tutorials

For a quick overview of SciPy functionality, see the user guide.

You can also refer to the reference guide for an exhaustive list of all what is possible with SciPy.

6 Chapter 1. Getting started

CHAPTER
TWO

SCIPY USER GUIDE

2.1 Introduction

Contents

e Introduction

— SciPy Organization

— Finding Documentation

SciPy is a collection of mathematical algorithms and convenience functions built on the NumPy extension of Python.
It adds significant power to the interactive Python session by providing the user with high-level commands and classes
for manipulating and visualizing data. With SciPy, an interactive Python session becomes a data-processing and system-
prototyping environment rivaling systems, such as MATLAB, IDL, Octave, R-Lab, and SciLab.

The additional benefit of basing SciPy on Python is that this also makes a powerful programming language available for
use in developing sophisticated programs and specialized applications. Scientific applications using SciPy benefit from
the development of additional modules in numerous niches of the software landscape by developers across the world.
Everything from parallel programming to web and data-base subroutines and classes have been made available to the
Python programmer. All of this power is available in addition to the mathematical libraries in SciPy.

This tutorial will acquaint the first-time user of SciPy with some of its most important features. It assumes that the
user has already installed the SciPy package. Some general Python facility is also assumed, such as could be acquired
by working through the Python distribution’s Tutorial. For further introductory help the user is directed to the NumPy
documentation.

For brevity and convenience, we will often assume that the main packages (numpy, scipy, and matplotlib) have been
imported as:

>>> import numpy as np
>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt

These are the import conventions that our community has adopted after discussion on public mailing lists. You will see
these conventions used throughout NumPy and SciPy source code and documentation. While we obviously don’t require
you to follow these conventions in your own code, it is highly recommended.

SciPy Reference Guide, Release 1.8.0

2.1.1 SciPy Organization

SciPy is organized into subpackages covering different scientific computing domains. These are summarized in the fol-

lowing table:

Subpackage Description

cluster Clustering algorithms

constants Physical and mathematical constants

fftpack Fast Fourier Transform routines

integrate Integration and ordinary differential equation solvers
interpolate | Interpolation and smoothing splines

io Input and Output

linalg Linear algebra

ndimage N-dimensional image processing

odr Orthogonal distance regression

optimize

Optimization and root-finding routines

signal Signal processing

sparse Sparse matrices and associated routines
spatial Spatial data structures and algorithms
special Special functions

stats Statistical distributions and functions

SciPy sub-packages need to be imported separately, for example:

>>> from scipy import linalg, optimize

Because of their ubiquitousness, some of the functions in these subpackages are also made available in the scipy names-
pace to ease their use in interactive sessions and programs. In addition, many basic array functions from numpy are also
available at the top-level of the scipy package. Before looking at the sub-packages individually, we will first look at
some of these common functions.

2.1.2 Finding Documentation

SciPy and NumPy have documentation versions in both HTML and PDF format available at https://docs.scipy.org/, that
cover nearly all available functionality. However, this documentation is still work-in-progress and some parts may be
incomplete or sparse. As we are a volunteer organization and depend on the community for growth, your participation -
everything from providing feedback to improving the documentation and code - is welcome and actively encouraged.

Python’s documentation strings are used in SciPy for on-line documentation. There are two methods for reading them
and getting help. One is Python’s command help in the pydoc module. Entering this command with no arguments
(i.e. >>> help) launches an interactive help session that allows searching through the keywords and modules available
to all of Python. Secondly, running the command help(obj) with an object as the argument displays that object’s calling
signature, and documentation string.

The pydoc method of help is sophisticated but uses a pager to display the text. Sometimes this can interfere with the
terminal within which you are running the interactive session. A numpy/scipy-specific help system is also available under
the command numpy . info. The signature and documentation string for the object passed to the he 1p command are
printed to standard output (or to a writeable object passed as the third argument). The second keyword argument of
numpy . info defines the maximum width of the line for printing. If a module is passed as the argument to he 1 p then
a list of the functions and classes defined in that module is printed. For example:

>>> np.info (optimize.fmin)

fmin (func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None,

(continues on next page)

8 Chapter 2. SciPy User Guide

https://numpy.org/devdocs/reference/index.html#module-numpy
https://docs.scipy.org/
https://docs.python.org/dev/library/functions.html#help
https://docs.python.org/dev/library/pydoc.html#module-pydoc

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

full_output=0,

disp=1, retall=0, callback=None)

Minimize a function using the downhill simplex algorithm.

Parameters
func callable func(x, *args)
The objective function to be minimized.
x0 ndarray
Initial guess.
args tuple
Extra arguments passed to func, i.e. " f(x,*args) °
callback callable
Called after each iteration, as callback(xk), where xk is the
current parameter vector.
Returns
xopt ndarray
Parameter that minimizes function.
fopt float
Value of function at minimum: °~ fopt = func (xopt) .
iter int
Number of iterations performed.
funcalls int
Number of function calls made.
warnflag int
1 : Maximum number of function evaluations made.
2 : Maximum number of iterations reached.
allvecs list

Solution at each iteration.

Other parameters

xtol float
Relative error
ftol number

Relative error
maxiter int
Maximum number
number

Maximum number
full_output bool

Set to True if

maxfun

disp bool
Set to True to
retall bool

Set to True to

Uses a Nelder-Mead

in xopt acceptable for convergence.

in func (xopt) acceptable for convergence.

of iterations to perform.
of function evaluations to make.
fopt and warnflag outputs are desired.

print convergence messages.

return list of solutions at each iteration.

simplex algorithm to find the minimum of function of

(continues on next page)

2.1. Introduction

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

one or more variables.

Another useful command is di r, which can be used to look at the namespace of a module or package.

2.2 Special functions (scipy.special)

The main feature of the scipy.special package is the definition of numerous special functions of mathematical
physics. Available functions include airy, elliptic, bessel, gamma, beta, hypergeometric, parabolic cylinder, mathieu,
spheroidal wave, struve, and kelvin. There are also some low-level stats functions that are not intended for general use as
an easier interface to these functions is provided by the st at s module. Most of these functions can take array arguments
and return array results following the same broadcasting rules as other math functions in Numerical Python. Many of these
functions also accept complex numbers as input. For a complete list of the available functions with a one-line description
type >>> help (special) . Each function also has its own documentation accessible using help. If you don’t see a
function you need, consider writing it and contributing it to the library. You can write the function in either C, Fortran,
or Python. Look in the source code of the library for examples of each of these kinds of functions.

2.2.1 Bessel functions of real order(jv, jn_zeros)
Bessel functions are a family of solutions to Bessel’s differential equation with real or complex order alpha:

d?y dy
249 ay 2\, _
dx? erdm +(—a)y=0

Among other uses, these functions arise in wave propagation problems, such as the vibrational modes of a thin drum head.
Here is an example of a circular drum head anchored at the edge:

>>> from scipy import special
>>> def drumhead_height (n, k, distance, angle, t):
kth_zero = special.jn_zeros(n, k) [-1]
ce return np.cos(t) * np.cos(n*angle) * special.jn(n, distance*kth_zero)
>>> theta = np.r_[0:2*np.pi:507]

>>> radius = np.r_[0:1:507]

>>> x = np.array([r * np.cos(theta) for r in radius])

>>> y = np.array([r * np.sin(theta) for r in radius])

>>> 7z = np.array ([drumhead_height (1, 1, r, theta, 0.5) for r in radius])

>>> import matplotlib.pyplot as plt

>>> fig = plt.figure()

>>> ax = fig.add_axes (rect=(0, 0.05, 0.95, 0.95), projection='3d")

>>> ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap='RdBu_r', vmin=-0.5,_

—vmax=0.5)

>>> ax.set_xlabel ('

>>> ax.set_ylabel(

>>> ax.set_xticks(
(
(

)
np. arange(1, 1.1, 0.5))
np arange (-1, 1.1, 0.5))
A} A})

>>> ax.set_yticks
>>> ax.set_zlabel
>>> plt.show ()

10 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

[04
0.2
0.0

> Iy
~ F —0.4

1.0
0.5
0.0

0.0 -05 Y

0.5 _
X 1.0 1.0

-1.0
-0.5

2.2.2 Cython Bindings for Special Functions (scipy.special.cython_special)

SciPy also offers Cython bindings for scalar, typed versions of many of the functions in special. The following Cython
code gives a simple example of how to use these functions:

cimport scipy.special.cython_special as csc

cdef:
double x = 1
double complex z = 1 + 173
double si, ci, rgam
double complex cgam

rgam = csc.gamma (x)
print (rgam)
cgam = csc.gamma (z)

print (cgam)
csc.sici(x, &si, &ci)
print (si, ci)

(See the Cython documentation for help with compiling Cython.) In the example the function csc.gamma works
essentially like its ufunc counterpart gamma, though it takes C types as arguments instead of NumPy arrays. Note,
in particular, that the function is overloaded to support real and complex arguments; the correct variant is selected at
compile time. The function csc. sici works slightly differently from sici; for the ufunc we could write ai, bi =
sici (x), whereas in the Cython version multiple return values are passed as pointers. It might help to think of this as
analogous to calling a ufunc with an output array: sici (x, out=(si, ci)).

There are two potential advantages to using the Cython bindings:
* they avoid Python function overhead
* they do not require the Python Global Interpreter Lock (GIL)

The following sections discuss how to use these advantages to potentially speed up your code, though, of course, one
should always profile the code first to make sure putting in the extra effort will be worth it.

2.2. Special functions (scipy.special) 11

http://docs.cython.org/en/latest/src/reference/compilation.html

SciPy Reference Guide, Release 1.8.0

Avoiding Python Function Overhead

For the ufuncs in special, Python function overhead is avoided by vectorizing, that is, by passing an array to the function.
Typically, this approach works quite well, but sometimes it is more convenient to call a special function on scalar inputs
inside a loop, for example, when implementing your own ufunc. In this case, the Python function overhead can become
significant. Consider the following example:

import scipy.special as sc
cimport scipy.special.cython_special as csc

def python_tight_loop():
cdef:
int n
double x = 1

for n in range(100):
sc.jv(n, x)

def cython_tight_loop():
cdef:
int n
double x = 1

for n in range(100):
csc.jv(n, x)

On one computer python_tight_loop took about 131 microseconds to run and cython_tight_loop took
about 18.2 microseconds to run. Obviously this example is contrived: one could just call special.jv (np.
arange (100), 1) and get results just as fast as in cython_tight_loop. The point is that if Python function
overhead becomes significant in your code, then the Cython bindings might be useful.

Releasing the GIL

One often needs to evaluate a special function at many points, and typically the evaluations are trivially parallelizable.
Since the Cython bindings do not require the GIL, it is easy to run them in parallel using Cython’s prange function. For
example, suppose that we wanted to compute the fundamental solution to the Helmholtz equation:

ALG(z,y) + K Gla,y) = 6(z — y),

where k is the wavenumber and § is the Dirac delta function. It is known that in two dimensions the unique (radiating)
solution is

1
Ga,y) = 7Hy (Kl —y)),

where H, él) is the Hankel function of the first kind, i.e., the function hankel 1. The following example shows how we
could compute this function in parallel:

from libc.math cimport fabs
cimport cython
from cython.parallel cimport prange

import numpy as np
import scipy.special as sc

(continues on next page)

12 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

cimport scipy.special.cython_special as csc

def serial_G(k, x, Vy):
return 0.25j*sc.hankell (0, k*np.abs(x — y))

@cython.boundscheck (False)
@cython.wraparound (False)
cdef void _parallel_G(double k, double[:,:] x, double[:,:] vy,
double complex[:,:] out) nogil:
cdef int i, j

for i in prange(x.shape([0]) :
for j in range(y.shape[0]) :
out[i,j] = 0.25j*csc.hankell (0, k*fabs(x[i,3] - yI[i,31))

def parallel_G(k, x, Vy):
out = np.empty_like (x, dtype='complexl128")
_parallel_G(k, x, y, out)
return out

(For help with compiling parallel code in Cython see here.) If the above Cython code is in a file test . pyx, then we
can write an informal benchmark which compares the parallel and serial versions of the function:

import timeit

import numpy as np

from test import serial_G, parallel_G

def main():
k=1

X, y = np.linspace(-100, 100, 1000), np.linspace(-100, 100, 1000)
X, y = np.meshgrid(x, vy)

def serial():
serial_G(k, %, y)

def parallel():
parallel_G(k, x, y)

time_serial = timeit.timeit (serial, number=3)

time_parallel = timeit.timeit (parallel, number=3)

print ("Serial method took {:.3} seconds".format (time_serial))

print ("Parallel method took {:.3} seconds".format (time_parallel))
if _ name_ == "_ _main_

main ()

m.

On one quad-core computer the serial method took 1.29 seconds and the parallel method took 0.29 seconds.

2.2. Special functions (scipy.special) 13

http://docs.cython.org/en/latest/src/userguide/parallelism.html#compiling

SciPy Reference Guide, Release 1.8.0

2.2.3 Functions not in scipy.special

Some functions are not included in special because they are straightforward to implement with existing functions in
NumPy and SciPy. To prevent reinventing the wheel, this section provides implementations of several such functions,
which hopefully illustrate how to handle similar functions. In all examples NumPy is imported as np and special is
imported as sc.

The binary entropy function:

def binary_entropy (x):
return - (sc.xlogy(x, x) + sc.xloglpy(l - x, -x))/np.log(2)

A rectangular step function on [0, 1]:

def step(x):
return 0.5% (np.sign(x) + np.sign(l - x))

Translating and scaling can be used to get an arbitrary step function.

The ramp function:

def ramp (x):
return np.maximum(0, x)

2.3 Integration (scipy.integrate)

The scipy.integrate sub-package provides several integration techniques including an ordinary differential equa-
tion integrator. An overview of the module is provided by the help command:

>>> help(integrate)
Methods for Integrating Functions given function object.

quad —— General purpose integration.

dblquad —— General purpose double integration.

tplquad —— General purpose triple integration.

fixed_quad —— Integrate func(x) using Gaussian quadrature of order n.
quadrature —-— Integrate with given tolerance using Gaussian quadrature.
romberg —— Integrate func using Romberg integration.

Methods for Integrating Functions given fixed samples.

trapezoid —— Use trapezoidal rule to compute integral.

cumulative_trapezoid —-—- Use trapezoidal rule to cumulatively compute.
—integral.

simpson —— Use Simpson's rule to compute integral from.
—samples.

romb —-— Use Romberg Integration to compute integral from

-— (2**k + 1) evenly-spaced samples.

See the special module's orthogonal polynomials (special) for Gaussian
quadrature roots and weights for other weighting factors and regions.

Interface to numerical integrators of ODE systems.

(continues on next page)

14 Chapter 2. SciPy User Guide

https://en.wikipedia.org/wiki/Binary_entropy_function
https://en.wikipedia.org/wiki/Ramp_function

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

odeint —— General integration of ordinary differential equations.
ode —-— Integrate ODE using VODE and ZVODE routines.

2.3.1 General integration (quad)

The function quad is provided to integrate a function of one variable between two points. The points can be 0o (£
inf) to indicate infinite limits. For example, suppose you wish to integrate a bessel function jv (2.5, x) along the
interval [0,4.5].

4.5
1 :/ J2_5 ((E) dx.
0

This could be computed using quad:

>>> import scipy.integrate as integrate

>>> import scipy.special as special

>>> result = integrate.quad(lambda x: special.jv(2.5,x), 0, 4.5)
>>> result

(1.1178179380783249, 7.8663172481899801e-09)

>>> from numpy import sqgrt, sin, cos, pi

>>> T = sqgrt(2/pi)*(18.0/27*sgrt (2)*cos(4.5) — 4.0/27*sqgrt(2)*sin(4.5) +
sqgrt (2*pi) * special.fresnel (3/sqrt(pi)) [0])

>>> T
1.117817938088701

>>> print (abs(result[0]-I))
1.03761443881e-11

The first argument to quad is a “callable” Python object (i.e., a function, method, or class instance). Notice the use of a
lambda- function in this case as the argument. The next two arguments are the limits of integration. The return value is
a tuple, with the first element holding the estimated value of the integral and the second element holding an upper bound
on the error. Notice, that in this case, the true value of this integral is

I % (;i\/icos (45) - %\/Esin (4.5) + V2rsi (;)) :

where

Si(z) = /Oz sin (gt2> dt.

is the Fresnel sine integral. Note that the numerically-computed integral is within 1.04 x 10~ of the exact result —
well below the reported error bound.

If the function to integrate takes additional parameters, they can be provided in the args argument. Suppose that the
following integral shall be calculated:

1
I(a,b) :/ az® + bdzx.
0

This integral can be evaluated by using the following code:

2.3. Integration (scipy.integrate) 15

SciPy Reference Guide, Release 1.8.0

>>> from scipy.integrate import quad
>>> def integrand(x, a, b):
return a*x**2 + Db

>>>

a =2
>>> b = 1
>>> I = quad(integrand, 0, 1, args=(a,b))
>>> T

(1.6666666666666667, 1.8503717077085944e-14)

Infinite inputs are also allowed in quad by using &+ inf as one of the arguments. For example, suppose that a numerical
value for the exponential integral:

tn

is desired (and the fact that this integral can be computed as special.expn (n, x) is forgotten). The functionality of
the function special.expn can be replicated by defining a new function vec_expint based on the routine quad:

>>> from scipy.integrate import quad
>>> def integrand(t, n, x):
return np.exp(-x*t) / t**n

>>> def expint(n, x):
return quad(integrand, 1, np.inf, args=(n, x)) [0]

>>> vec_expint = np.vectorize (expint)

>>> vec_expint (3, np.arange (1.0, 4.0, 0.5))

array ([0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.00491)
>>> import scipy.special as special

>>> special.expn (3, np.arange(1.0,4.0,0.5))

array ([0.1097, 0.0567, 0.0301, 0.0163, 0.0089, 0.00491])

The function which is integrated can even use the quad argument (though the error bound may underestimate the error
due to possible numerical error in the integrand from the use of guad). The integral in this case is

e o] o e—xt
I, = m
0 1

1
dtdr = —.
n

>>> result = quad(lambda x: expint (3, x), 0, np.inf)
>>> print (result)
(0.33333333324560266, 2.8548934485373678e-09)

>>> I3 = 1.0/3.0
>>> print (I3)
0.333333333333

>>> print (I3 - result[0])
8.77306560731e-11

This last example shows that multiple integration can be handled using repeated calls to quad.

16 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

2.3.2 General multiple integration (dblquad, tplquad, nquad)

The mechanics for double and triple integration have been wrapped up into the functions dblquad and tplqgquad.
These functions take the function to integrate and four, or six arguments, respectively. The limits of all inner integrals
need to be defined as functions.

An example of using double integration to compute several values of I,, is shown below:

>>> from scipy.integrate import quad, dblguad

>>> def I(n):

.. return dblgquad(lambda t, x: np.exp(-x*t)/t**n, 0, np.inf, lambda x: 1,
< lambda x: np.inf)

>>> print (I(4))

(0.2500000000043577, 1.29830334693681e-08)
>>> print (I(3))

(0.33333333325010883, 1.3888461883425516e-08)
>>> print (I(2))

(0.4999999999985751, 1.3894083651858995e-08)

As example for non-constant limits consider the integral

1/2 pl-2y 1
1= / / zydrdy = —.
y=0 Jax=0 96

This integral can be evaluated using the expression below (Note the use of the non-constant lambda functions for the
upper limit of the inner integral):

>>> from scipy.integrate import dblquad

>>> area = dblquad(lambda x, y: x*y, 0, 0.5, lambda x: 0, lambda x: 1-2*x)
>>> area

(0.010416666666666668, 1.1564823173178715e-16)

For n-fold integration, scipy provides the function nquad. The integration bounds are an iterable object: either a list of
constant bounds, or a list of functions for the non-constant integration bounds. The order of integration (and therefore
the bounds) is from the innermost integral to the outermost one.

oo o0 e—zt
I, = m
0 1

The integral from above

1
dtdx = —
n

can be calculated as

>>> from scipy import integrate
>>> N = 5
>>> def f(t, x):

return np.exp (-x*t) / t**N

>>> integrate.nquad(f, [[1, np.inf], [0, np.inf]l])
(0.20000000000002294, 1.2239614263187945e-08)

Note that the order of arguments for f must match the order of the integration bounds; i.e., the inner integral with respect
to ¢ is on the interval [1, co] and the outer integral with respect to x is on the interval [0, co].

2.3. Integration (scipy.integrate) 17

SciPy Reference Guide, Release 1.8.0

Non-constant integration bounds can be treated in a similar manner; the example from above

1/2 pl-2y 1
1= / / zydrdy = —.
y=0 Ja=0 96

can be evaluated by means of

>>> from scipy import integrate
>>> def f(x, y):
return x*y

>>> def bounds_y () :
return [0, 0.5]

>>> def bounds_x(y):
return [0, 1-2*y]

>>> integrate.nquad(f, [bounds_x, bounds_y])
(0.010416666666666668, 4.101620128472366e-16)

which is the same result as before.

2.3.3 Gaussian quadrature

A few functions are also provided in order to perform simple Gaussian quadrature over a fixed interval. The first is
fixed_quad, which performs fixed-order Gaussian quadrature. The second function is quadrat ure, which performs
Gaussian quadrature of multiple orders until the difference in the integral estimate is beneath some tolerance supplied
by the user. These functions both use the module scipy.special.orthogonal, which can calculate the roots
and quadrature weights of a large variety of orthogonal polynomials (the polynomials themselves are available as special
functions returning instances of the polynomial class — e.g., special. legendre).

2.3.4 Romberg Integration

Romberg’s method [WPR] is another method for numerically evaluating an integral. See the help function for romberg
for further details.

2.3.5 Integrating using Samples

If the samples are equally-spaced and the number of samples available is 2¥ 4 1 for some integer k, then Romberg
romb integration can be used to obtain high-precision estimates of the integral using the available samples. Romberg
integration uses the trapezoid rule at step-sizes related by a power of two and then performs Richardson extrapolation on
these estimates to approximate the integral with a higher degree of accuracy.

In case of arbitrary spaced samples, the two functions t rapezoidand simpson are available. They are using Newton-
Coates formulas of order 1 and 2 respectively to perform integration. The trapezoidal rule approximates the function as
a straight line between adjacent points, while Simpson’s rule approximates the function between three adjacent points as
a parabola.

For an odd number of samples that are equally spaced Simpson’s rule is exact if the function is a polynomial of order 3 or
less. If the samples are not equally spaced, then the result is exact only if the function is a polynomial of order 2 or less.

18 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

>>> import numpy as np
>>> def f1l(x):
return x**2

>>> def f2(x):
return x**3

>>> x = np.array([1,3,4])
>>> yl1 = f1(x)
>>> from scipy import integrate

>>> I1 = integrate.simpson(yl, x)
>>> print (I1)
21.0

This corresponds exactly to

4
/ 22 dx = 21,
1

whereas integrating the second function

>>> y2 = f2(x)

>>> I2 = integrate.simpson(y2, x)
>>> print (I2)

61.5

does not correspond to
4
/ 2% dx = 63.75
1

because the order of the polynomial in {2 is larger than two.

2.3.6 Faster integration using low-level callback functions

A user desiring reduced integration times may pass a C function pointer through scipy.LowLevelCallable to
quad, dblquad, tplquador nquad and it will be integrated and return a result in Python. The performance increase
here arises from two factors. The primary improvement is faster function evaluation, which is provided by compilation
of the function itself. Additionally we have a speedup provided by the removal of function calls between C and Python
in quad. This method may provide a speed improvements of ~2x for trivial functions such as sine but can produce a
much more noticeable improvements (10x+) for more complex functions. This feature then, is geared towards a user with
numerically intensive integrations willing to write a little C to reduce computation time significantly.

The approach can be used, for example, via ct ypes in a few simple steps:

1.) Write an integrand function in C with the function signature double £ (int n, double *x, void
*user_data), where x is an array containing the point the function f is evaluated at, and user_data to arbitrary
additional data you want to provide.

/* testlib.c */
double f (int n, double *x, wvoid *user_data) {
double ¢ = * (double *)user_data;
return c + x[0] - x[1] * x[2]; /* corresponds to ¢ + x — vy * z */

2.3. Integration (scipy.integrate) 19

https://docs.python.org/dev/library/ctypes.html#module-ctypes

SciPy Reference Guide, Release 1.8.0

2.) Now compile this file to a shared/dynamic library (a quick search will help with this as it is OS-dependent). The user
must link any math libraries, etc., used. On linux this looks like:

$ gcc —-shared —-fPIC -o testlib.so testlib.c

The output library will be referred to as test 1ib. so, but it may have a different file extension. A library has now been
created that can be loaded into Python with ctypes.

3.) Load shared library into Python using ct ypes and set restypes and argtypes - this allows SciPy to interpret
the function correctly:

import os, ctypes
from scipy import integrate, LowLevelCallable

lib = ctypes.CDLL (os.path.abspath('testlib.so'))

lib.f.restype = ctypes.c_double

lib.f.argtypes = (ctypes.c_int, ctypes.POINTER (ctypes.c_double), ctypes.c_
—void_p)

c = ctypes.c_double (1.0)
user_data = ctypes.cast (ctypes.pointer(c), ctypes.c_void_p)

func = LowLevelCallable(lib.f, user_data)

The last void *user_data in the function is optional and can be omitted (both in the C function and ctypes argtypes)
if not needed. Note that the coordinates are passed in as an array of doubles rather than a separate argument.

4.) Now integrate the library function as normally, here using nquad:

>>> integrate.nquad(func, [[O0, 10], [-10, O], [-1, 111)
(1200.0, 1.1102230246251565e-11)

The Python tuple is returned as expected in a reduced amount of time. All optional parameters can be used with this
method including specifying singularities, infinite bounds, etc.

2.3.7 Ordinary differential equations (solve_ivp)

Integrating a set of ordinary differential equations (ODEs) given initial conditions is another useful example. The function
solve_ivpis available in SciPy for integrating a first-order vector differential equation:

dy
=L = f(y,t
i (y.t),

given initial conditions y (0) = o, where y is a length N vector and f is a mapping from R" to R"™. A higher-order
ordinary differential equation can always be reduced to a differential equation of this type by introducing intermediate
derivatives into the y vector.

For example, suppose it is desired to find the solution to the following second-order differential equation:

d2
d—;; —z2w(z) =0
with initial conditions w (0) = \3/3*%1‘(2) and % 0 — —ﬁ(l). It is known that the solution to this differential
5 = 3

equation with these boundary conditions is the Airy function

w = Ai(z),

20 Chapter 2. SciPy User Guide

https://docs.python.org/dev/library/ctypes.html#module-ctypes
https://docs.python.org/dev/library/ctypes.html#module-ctypes

SciPy Reference Guide, Release 1.8.0

which gives a means to check the integrator using special.airy.

First, convert this ODE into standard form by setting y = [%’, w] and ¢ = z. Thus, the differential equation becomes

A I A R i 2

f(y,t)=A()y.

In other words,

As an interesting reminder, if A (¢) commutes with fot A (7) dr under matrix multiplication, then this linear differential
equation has an exact solution using the matrix exponential:

v =eo([A)ar)y 0.

However, in this case, A (¢) and its integral do not commute.

This differential equation can be solved using the function solve_ivp. It requires the derivative, fprime, the time span
[t_start, t_end] and the initial conditions vector, y0, as input arguments and returns an object whose y field is an array
with consecutive solution values as columns. The initial conditions are therefore given in the first output column.

>>> from scipy.integrate import solve_ivp
>>> from scipy.special import gamma, airy
>>> y1_0 = +1 / 3**(2/3) / gamma (2/3)
>>> y0_0 = -1 / 3**(1/3) / gamma (1/3)
>>> y0 = [y0_0, y1_0]
>>> def func(t, y):

return [t*y[1],y([0]]

>>> t_span = [0, 4]

>>> so0ll = solve_ivp (func, t_span, yO0)

>>> print("soll.t: ".format (soll.t))

soll.t: [0. 0.10097672 1.04643602 1.91060117 2.49872472 3.08684827
3.62692846 4.]

Asitcanbe seen solve_ ivp determines its time steps automatically if not specified otherwise. To compare the solution
of solve_ivp with the airy function the time vector created by solve_ ivp is passed to the airy function.

>>> print ("soll.y[1]: ".format (soll.yI[1]))
soll.y[1]: [0.35502805 0.328952 0.12801343 0.04008508 0.01601291 0.00623879
0.00356316 0.00405982]
>>> print ("airy(sol.t) [0]: ".format (airy(soll.t) [0]))
airy(sol.t) [0]: [0.35502805 0.328952 0.12804768 0.03995804 0.01575943 0.
00562799
0.00201689 0.00095156]

The solution of solve_ ivp with its standard parameters shows a big deviation to the airy function. To minimize this
deviation, relative and absolute tolerances can be used.

>>> rtol, atol = (le—-8, 1e-8)

>>> sol2 = solve_ivp(func, t_span, y0, rtol=rtol, atol=atol)

>>> print("sol2.y[1][::6]: ".format (sol2.y[1][0::6]))

sol2.y[1][::6]: [0.35502805 0.19145234 0.06368989 0.0205917 0.00554734 0.
—~001064009]

(continues on next page)

2.3. Integration (scipy.integrate) 21

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> print ("airy(sol2.t) [0][::6]: " format (airy(sol2.t) [0][::6]1))
airy(sol2.t) [0][::6]: [0.35502805 0.19145234 0.06368989 0.0205917 0.00554733._
—0.001064006]

To specify user defined time points for the solution of solve_ ivp, solve_ivp offers two possibilities that can also
be used complementarily. By passing the ¢_eval option to the function call solve ivp returns the solutions of these
time points of ¢_eval in its output.

>>> import numpy as np
>>> t = np.linspace(0, 4, 100)
>>> so0l3 = solve_ivp (func, t_span, y0, t_eval=t)

If the jacobian matrix of function is known, it can be passed to the solve_ i vp to achieve better results. Please be aware
however that the default integration method RK45 does not support jacobian matrices and thereby another integration
method has to be chosen. One of the integration methods that support a jacobian matrix is the for example the Radau
method of following example.

>>> def gradient(t, y):
.. return [[0,t], [1,0]]
>>> sold4 = solve_ivp (func, t_span, y0, method='Radau', jac=gradient)

Solving a system with a banded Jacobian matrix
odeint can be told that the Jacobian is banded. For a large system of differential equations that are known to be stiff,
this can improve performance significantly.

As an example, we'll solve the 1-D Gray-Scott partial differential equations using the method of lines [MOL]. The
Gray-Scott equations for the functions u(x,t) and v(z, t) on the interval = € [0, L] are

ou 0%u 9
ov 0%v

E: v@+uvg_(f+k)v

where D,, and D,, are the diffusion coefficients of the components u and v, respectively, and f and k are constants. (For
more information about the system, see http://groups.csail.mit.edu/mac/projects/amorphous/GrayScott/)

We'll assume Neumann (i.e., “no flux”) boundary conditions:

ou v ou v

—(0,t) =0, —(0,t)=0, —(L,t)=0, —(L,t)=0

5 (0o 1) 7 0o t) 5 L t) 5 L t)
To apply the method of lines, we discretize the x variable by defining the uniformly spaced grid of N points
{zo,21,...,xn_1}, withzg = O and xny_; = L. We define u;(t) = u(xx,t) and v;(t) = v(z,t), and replace

the x derivatives with finite differences. That is,

62U Uj—1 t) — 2’[1,]‘ t Uj1 t
552 (@int) = ®) (A:c()ng +1(1)

We then have a system of 2NV ordinary differential equations:

ditj - (Ax)? (uj—1 = 2uj +ujpn) — ujv? + (1 —wy)
dv; D D
ditj = L (vjo1 — 205 +vj41) + 15 32 — (f +k)v;

22 Chapter 2. SciPy User Guide

http://groups.csail.mit.edu/mac/projects/amorphous/GrayScott/

SciPy Reference Guide, Release 1.8.0

For convenience, the (¢) arguments have been dropped.

To enforce the boundary conditions, we introduce “ghost” points z_; and z, and define u_1(t) = u1(t), un(t) =
un—2(t); v_1(t) and vy (t) are defined analogously.

Then
du Du
7; B (Ax)? (2ur — 2uo) — ugv + f(1 — uo)
" D 2.2)
dt (A;)z (2v1 — 2vg) + uovg — (f + k)vo
and
du — Du
2jl:(Axy(QUN—Q*QUN—H‘*“N—N&=1+j(1*uN‘ﬁ
K . 2 2.3)
T (D)2 (2uny—2 —2un_1) +un_1vN_1 — (f Fk)on—1

Our complete system of 2V ordinary differential equations is (2.1) for k = 1,2,..., N — 2, along with (2.2) and (2.3).

We can now starting implementing this system in code. We must combine {uy, } and {vy} into a single vector of length
2N. The two obvious choices are {ug, %1, ..., UN—1,V0, V1, .,VN-1} and {ug, vy, u1,v1, ..., uN—1,VN—1}. Math-
ematically, it does not matter, but the choice affects how efficiently odeint can solve the system. The reason is in how
the order affects the pattern of the nonzero elements of the Jacobian matrix.

When the variables are ordered as {ug, u1, ..., un—1,v0, V1, - .., UN_1 |, the pattern of nonzero elements of the Jacobian

matrix is
«%00000%x000000
+%%00000%x00000
0x*+00000x0000
00%+x00000%000
000%x+x00000%00
0000x+%x00000=x0
00000000000
x000000%x00000
0x00000*«%x%x0000
00«x00000*x=*%x000
000*x00000=*x*x%00
0000%00000 %0
00000%00000 % x
0000000000) * x

The Jacobian pattern with variables interleaved as {ug, v, w1, v1,. .., UN—1,UN—1} IS

*+%x%x 00000000000
*+x0%x0000000000
*0*x*%x%x000000000
0*+*x0%x00000000
00+x0x*+x0000000
000x*x*x0%x000000
0000x0xxx00000
00000**x0%x0000
000000*0*x%x%x000
0000000*x%x%x0%x00
00000000 *0=*=*x%x0
000000000 * = *0 x*
0000000000 %0 * x*
00000000000 * * %

In both cases, there are just five nontrivial diagonals, but when the variables are interleaved, the bandwidth is much smaller.
That is, the main diagonal and the two diagonals immediately above and the two immediately below the main diagonal are
the nonzero diagonals. This is important, because the inputs mu and m1 of odeint are the upper and lower bandwidths
of the Jacobian matrix. When the variables are interleaved, mu and m1 are 2. When the variables are stacked with {vy}
following {uy, }, the upper and lower bandwidths are V.

With that decision made, we can write the function that implements the system of differential equations.

First, we define the functions for the source and reaction terms of the system:

2.3. Integration (scipy.integrate) 23

SciPy Reference Guide, Release 1.8.0

def G(u, v, £, k):
return £ * (1 - u) - u*v**2

def H(u, v, £, k):
return —(f + k) * v + u*v**2

Next, we define the function that computes the right-hand side of the system of differential equations:

def grayscottld(y, t, £, k, Du, Dv, dx):

mrrn

Differential equations for the 1-D Gray-Scott equations.

The ODEs are derived using the method of lines.

mrrn

The vectors u and v are interleaved in y. We define
views of u and v by slicing y.

u = yl::2]

v =vy[l::2]

dydt is the return value of this function.
dydt = np.empty_like (y)

Just like u and v are views of the interleaved vectors
in y, dudt and dvdt are views of the interleaved output
vectors in dydt.

dudt = dydt[::2]

dvdt = dydt[1::2]

Compute du/dt and dv/dt. The end points and the interior points
are handled separately.

dudt [0] = G(ulo0], v[i0], f, k) + Du * (-2.0*u[0] + 2.0*u[1]) /.
—dx**2

dudt[1:-1] = G(u[l:-1], vI[1:-1], £, k) + Du * np.diff(u,2) / dx**2

dudt [-1] = G(ul[-11, v[i-11, f, k) + Du * (- 2.0*u[-1] + 2.0*ul[-2]) /=
—dx**2

dvdt [0] = H(ulO0], v[0], f, k) + Dv * (=2.0*v[0] + 2.0*v[1]) /.
—dx**2

dvdt[1:-1] = H(u[l:-1], vI[1:-1], £, k) + Dv * np.diff(v,2) / dx**2

dvdt [-1] = H(ul[-11, vi-11, f, k) + Dv * (-2.0*v[-1] + 2.0*v[-2]) /_
—dx**2

return dydt

We won’t implement a function to compute the Jacobian, but we will tell odeint that the Jacobian matrix is banded.
This allows the underlying solver (LSODA) to avoid computing values that it knows are zero. For a large system, this
improves the performance significantly, as demonstrated in the following ipython session.

First, we define the required inputs:

In [30]: rng = np.random.default_rng()
In [31]: y0 = rng.standard_normal (5000)

In [32]: t = np.linspace (0, 50, 11)

(continues on next page)

24 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

0.024

In [33]: £

In [34]: k = 0.055

In [35]: Du = 0.01

In [36]: Dv = 0.005

In [37]: dx 0.025

Time the computation without taking advantage of the banded structure of the Jacobian matrix:

In [38]: %timeit sola = odeint (grayscottld, y0, t, args=(f, k, Du, Dv, dx))
1 loop, best of 3: 25.2 s per loop

Now set m1=2 and mu=2, so odeint knows that the Jacobian matrix is banded:

In [39]: %timeit solb = odeint (grayscottld, y0, t, args=(f, k, Du, Dv, dx),_
—ml=2, mu=2)
10 loops, best of 3: 191 ms per loop

That is quite a bit faster!

Let’s ensure that they have computed the same result:

In [41]: np.allclose(sola, solb)
Out[41]: True

References

2.4 Optimization (scipy.optimize)

Contents

e Optimization (scipy.optimize)
— Unconstrained minimization of multivariate scalar functions (minimize)

« Nelder-Mead Simplex algorithm (method="Nelder—-Mead"')

* Broyden-Fletcher-Goldfarb-Shanno algorithm (met hod="BFGS ")

« Newton-Conjugate-Gradient algorithm (met hod="Newton-CG"')
- Full Hessian example:
- Hessian product example:

« Trust-Region Newton-Conjugate-Gradient Algorithm (met hod="trust-ncg')

- Full Hessian example:

- Hessian product example:

2.4. Optimization (scipy.optimize) 25

SciPy Reference Guide, Release 1.8.0

« Trust-Region Truncated Generalized — Lanczos / Conjugate Gradient Algorithm
(method="trust—krylov')

- Full Hessian example:
- Hessian product example:
« Trust-Region Nearly Exact Algorithm (met hod="trust-exact')
— Constrained minimization of multivariate scalar functions (minimize)
Trust-Region Constrained Algorithm (method="trust—-constr')
- Defining Bounds Constraints:
- Defining Linear Constraints:
- Defining Nonlinear Constraints:
- Solving the Optimization Problem:

« Sequential Least SQuares Programming (SLSQP) Algorithm (met hod="SLSQP ')

Global optimization

Least-squares minimization (lLeast_squares)
x Example of solving a fitting problem

« Further examples

Univariate function minimizers (minimize_scalar)
x Unconstrained minimization (met hod="brent ')
* Bounded minimization (met hod="bounded"')

Custom minimizers

Root finding
x Scalar functions
« Fixed-point solving
x Sets of equations
* Root finding for large problems
« Still too slow? Preconditioning.
— Linear programming (Linprog)
x Linear programming example

— Assignment problems

« Linear sum assignment problem example

The scipy.optimize package provides several commonly used optimization algorithms. A detailed listing is avail-
able: scipy.optimize (can also be found by help (scipy.optimize)).

26 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

2.4.1 Unconstrained minimization of multivariate scalar functions (minimize)

The minimize function provides a common interface to unconstrained and constrained minimization algorithms for
multivariate scalar functions in scipy.optimize. To demonstrate the minimization function, consider the problem
of minimizing the Rosenbrock function of IV variables:

N-1
f(x)= Z 100 (zi41 — :1:12)2 + (1 =),
i=1

The minimum value of this function is O which is achieved when z; = 1.

Note that the Rosenbrock function and its derivatives are included in scipy. opt imize. The implementations shown
in the following sections provide examples of how to define an objective function as well as its jacobian and hessian
functions.

Nelder-Mead Simplex algorithm (method="'Nelder-Mead')

In the example below, the minimize routine is used with the Nelder-Mead simplex algorithm (selected through the
method parameter):

>>> import numpy as np
>>> from scipy.optimize import minimize

>>> def rosen(x):
"""The Rosenbrock function
return sum(100.0*(x[1:]-x[:-11**2.0)**2.0 + (1-x[:-1])**2.0)

mrran

>>> x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.21])
>>> res = minimize (rosen, x0, method='nelder-mead',
ce options={'xatol': 1e-8, 'disp': True})
Optimization terminated successfully.
Current function wvalue: 0.000000
Iterations: 339
Function evaluations: 571

>>> print (res.x)
(1. 1. 1. 1. 1.1

The simplex algorithm is probably the simplest way to minimize a fairly well-behaved function. It requires only function
evaluations and is a good choice for simple minimization problems. However, because it does not use any gradient
evaluations, it may take longer to find the minimum.

Another optimization algorithm that needs only function calls to find the minimum is Powell’s method available by setting
method="'powell' inminimize.

2.4. Optimization (scipy.optimize) 27

SciPy Reference Guide, Release 1.8.0

Broyden-Fletcher-Goldfarb-Shanno algorithm (method='BFGS')

In order to converge more quickly to the solution, this routine uses the gradient of the objective function. If the gradient is
not given by the user, then it is estimated using first-differences. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
typically requires fewer function calls than the simplex algorithm even when the gradient must be estimated.

To demonstrate this algorithm, the Rosenbrock function is again used. The gradient of the Rosenbrock function is the
vector:

of i
%j = ;200 (:L’i*x?_l) (6i7j 72‘%1'_1(51‘_17]') *2(1*Ii—1)51’—1,j~
= 200 (z; — a7 _,) —400z; (zj41 —27) —2(1 — ;).

This expression is valid for the interior derivatives. Special cases are

of
o = —400xq (931 - x%) —2(1 —xo),
of
- 200 (zn—1— TN _3) -

A Python function which computes this gradient is constructed by the code-segment:

>>> def rosen_der (x):
xm = x[1:-1]
xm_ml = x[:-2]
xm_pl = x[2:]
= np.zeros_like (x)
der[l:-1] = 200* (xm-—xm_ml1**2) — 400* (xm_pl - xm**2)*xm — 2* (1-xm)
der[0] = -400*x[0]*(x[1]-x[0]**2) — 2*(1-x[0])
der[-1] = 200*(x[-1]1-x[-2]**2)
return der

This gradient information is specified in the minimize function through the jac parameter as illustrated below.

>>> res = minimize (rosen, x0, method='BFGS', jac=rosen_der,
ce options={'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 51 # may vary
Function evaluations: 63
Gradient evaluations: 63
>>> res.x
array([(1., 1., 1., 1., 1.1)

Newton-Conjugate-Gradient algorithm (method="'Newton-CG')

Newton-Conjugate Gradient algorithm is a modified Newton’s method and uses a conjugate gradient algorithm to (ap-
proximately) invert the local Hessian [NW]. Newton’s method is based on fitting the function locally to a quadratic
form:

f(x) = f(x0) + Vf(x0) - (x —%0) + % (x —x0)" H (x0) (x — X0).

where H (xg) is a matrix of second-derivatives (the Hessian). If the Hessian is positive definite then the local minimum
of this function can be found by setting the gradient of the quadratic form to zero, resulting in

Xopt = X0 — H*IVf.

28 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

The inverse of the Hessian is evaluated using the conjugate-gradient method. An example of employing this method to
minimizing the Rosenbrock function is given below. To take full advantage of the Newton-CG method, a function which
computes the Hessian must be provided. The Hessian matrix itself does not need to be constructed, only a vector which
is the product of the Hessian with an arbitrary vector needs to be available to the minimization routine. As a result, the
user can provide either a function to compute the Hessian matrix, or a function to compute the product of the Hessian
with an arbitrary vector.

Full Hessian example:
The Hessian of the Rosenbrock function is

82 f

Hy =
8:1328%-

200 ((Si’j — 21}1‘,151‘,1’]‘) — 400371’ ((SiJr],j — 21’1‘6@]‘) — 400(51"]‘ (.%‘iJrl - LUZQ) + 25@’,]”

= (202 + 1200%‘? — 400171'—&-1) 5i,j — 4001‘1'(5“_17]‘ — 4001%_1(51'_17]‘,

ifi,j € [1,N — 2] with¢,j € [0, N — 1] defining the N x N matrix. Other non-zero entries of the matrix are

0% f
97 = 1200z2 — 400z + 2,
82 2
f = 9 f = —4001}0,
onc‘?xl 81’18%0
0% f 0% f
= = _400 —
Orn_10zN_2 Ozn_20TN_1 IN=2
62
0xg_4
For example, the Hessian when N = 5 is
120022 — 40027 + 2 —400x¢ 0 0 0
—400x¢ 202 + 120022 — 400z —40021 0 0
H= 0 —40021 202 + 120022 — 40023 —40022 0
0 —400z- 202 4+ 120022 — 40024 —400z3
0 0 0 —400x3 200

The code which computes this Hessian along with the code to minimize the function using Newton-CG method is shown
in the following example:

>>> def rosen_hess (x):

X = np.asarray (x)

H = np.diag(-400*x[:-1],1) - np.diag(400*x[:-1],-1)
diagonal = np.zeros_like (x)

diagonal[0] = 1200*x[0]**2-400*x[1]+2

diagonal[-1] = 200

diagonal[l:-1] = 202 + 1200*x[1l:-1]1**2 — 400*x[2:]

H = H + np.diag(diagonal)
return H

>>> res = minimize (rosen, x0, method='Newton-CG',
jac=rosen_der, hess=rosen_hess,
c.. options={'xtol': 1e-8, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 19 # may vary
Function evaluations: 22

(continues on next page)

2.4. Optimization (scipy.optimize) 29

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

Gradient evaluations: 19
Hessian evaluations: 19
>>> res.x
array ([1., 1., 1., 1., 1.1)

Hessian product example:

For larger minimization problems, storing the entire Hessian matrix can consume considerable time and memory. The
Newton-CG algorithm only needs the product of the Hessian times an arbitrary vector. As a result, the user can supply
code to compute this product rather than the full Hessian by giving a he s s function which take the minimization vector
as the first argument and the arbitrary vector as the second argument (along with extra arguments passed to the function
to be minimized). If possible, using Newton-CG with the Hessian product option is probably the fastest way to minimize
the function.

In this case, the product of the Rosenbrock Hessian with an arbitrary vector is not difficult to compute. If p is the arbitrary
vector, then H (x) p has elements:

(120023 — 4001 4 2) pg — 400zp1
H(x)p = |—400z;_1p;i—1 + (202 + 120027 — 400z;41) p; — 400z;p; 11

—400xy _2pN—2 + 200pN_1

Code which makes use of this Hessian product to minimize the Rosenbrock function using minimi ze follows:

>>> def rosen_hess_p(x, p):

X = np.asarray (x)

Hp = np.zeros_like (x)

Hpl[0] = (1200*x[0]1**2 — 400*x[1] + 2)*p[0] — 400*x[0]*p[1]
ce Hpl[l:-1] = —-400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*pl[l:-1]1=
<\

—400*x[1:-1]1*p[2:]

Hp[-1] = —-400*x[-2]*p[-2] + 200*p[-1]

return Hp
>>> res = minimize (rosen, x0, method='Newton-CG',

jac=rosen_der, hessp=rosen_hess_p,

ce options={'xtol': 1e-8, 'disp': True})
Optimization terminated successfully.

Current function value: 0.000000

Iterations: 20 # may vary

Function evaluations: 23

Gradient evaluations: 20

Hessian evaluations: 44
>>> res.x
array([1., 1., 1., 1., 1.1)

According to [NW] p. 170 the Newt on—CG algorithm can be inefficient when the Hessian is ill-conditioned because of
the poor quality search directions provided by the method in those situations. The method t rust-ncg, according to
the authors, deals more effectively with this problematic situation and will be described next.

30 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Trust-Region Newton-Conjugate-Gradient Algorithm (method="'trust-ncg')

The Newt on—CG method is a line search method: it finds a direction of search minimizing a quadratic approximation
of the function and then uses a line search algorithm to find the (nearly) optimal step size in that direction. An alternative
approach is to, first, fix the step size limit A and then find the optimal step p inside the given trust-radius by solving the
following quadratic subproblem:

. 1
min f (x) + Vf (xx) - p + 5p" H (x¢) i
subject to: ||p|| < A.

The solution is then updated x;11 = X, + p and the trust-radius A is adjusted according to the degree of agreement of
the quadratic model with the real function. This family of methods is known as trust-region methods. The t rust-ncg
algorithm is a trust-region method that uses a conjugate gradient algorithm to solve the trust-region subproblem [NW].

Full Hessian example:

>>> res = minimize (rosen, x0, method='trust-ncg',
jac=rosen_der, hess=rosen_hess,
c. options={'gtol': 1e-8, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 20 # may vary
Function evaluations: 21
Gradient evaluations: 20
Hessian evaluations: 19
>>> res.x
array ([1., 1., 1., 1., 1.1)

Hessian product example:

>>> res = minimize (rosen, x0, method='trust-ncg',
jac=rosen_der, hessp=rosen_hess_p,
ce options={'gtol': 1e-8, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 20 # may vary
Function evaluations: 21
Gradient evaluations: 20
Hessian evaluations: O
>>> res.x
array ([1., 1., 1., 1., 1.1)

Trust-Region Truncated Generalized Lanczos / Conjugate Gradient Algorithm
(method="'trust-krylov')

Similar to the t rust —ncg method, the t rust-krylov method is a method suitable for large-scale problems as it
uses the hessian only as linear operator by means of matrix-vector products. It solves the quadratic subproblem more
accurately than the t rust —ncg method.
. L 7
min f (xx) +V.f (xi) - p + 5p" H(x) p;

subject to: ||p|| < A.

2.4. Optimization (scipy.optimize) 31

SciPy Reference Guide, Release 1.8.0

This method wraps the [TRLIB] implementation of the [GLTR] method solving exactly a trust-region subproblem re-
stricted to a truncated Krylov subspace. For indefinite problems it is usually better to use this method as it reduces the
number of nonlinear iterations at the expense of few more matrix-vector products per subproblem solve in comparison
to the t rust—ncg method.

Full Hessian example:

>>> res = minimize(rosen, x0, method='trust-krylov'
jac=rosen_der, hess=rosen_hess,
. options={'gtol': 1e-8, 'disp': True})
Optlmlzatlon terminated successfully.
Current function value: 0.000000
Iterations: 19 # may vary
Function evaluations: 20
Gradient evaluations: 20
Hessian evaluations: 18
>>> res.x
array([1., 1., 1., 1., 1.1)

Hessian product example:

>>> res = minimize (rosen, x0, method='trust-krylov'
jac=rosen_der, hessp=rosen_hess_p,
. options={'gtol': 1e-8, 'disp': True})
Optlmlzatlon terminated successfully.
Current function value: 0.000000
Iterations: 19 # may vary
Function evaluations: 20
Gradient evaluations: 20
Hessian evaluations: O
>>> res.x
array([1., 1., 1., 1., 1.1)

Trust-Region Nearly Exact Algorithm (method="'trust-exact')

All methods Newt on—-CG, trust—ncgand t rust —krylov are suitable for dealing with large-scale problems (prob-
lems with thousands of variables). That is because the conjugate gradient algorithm approximately solve the trust-region
subproblem (or invert the Hessian) by iterations without the explicit Hessian factorization. Since only the product of the
Hessian with an arbitrary vector is needed, the algorithm is specially suited for dealing with sparse Hessians, allowing low
storage requirements and significant time savings for those sparse problems.

For medium-size problems, for which the storage and factorization cost of the Hessian are not critical, it is possible to
obtain a solution within fewer iteration by solving the trust-region subproblems almost exactly. To achieve that, a certain
nonlinear equations is solved iteratively for each quadratic subproblem [CGT]. This solution requires usually 3 or 4
Cholesky factorizations of the Hessian matrix. As the result, the method converges in fewer number of iterations and
takes fewer evaluations of the objective function than the other implemented trust-region methods. The Hessian product
option is not supported by this algorithm. An example using the Rosenbrock function follows:

>>> res = minimize (rosen, x0, method='trust-exact',
jac=rosen_der, hess=rosen_hess,
.. options={'gtol': 1e-8, 'disp': True})
Optlmlzatlon terminated successfully.
Current function value: 0.000000

(continues on next page)

32 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

Iterations: 13 # may vary
Function evaluations: 14
Gradient evaluations: 13
Hessian evaluations: 14
>>> res.x
array ([1., 1., 1., 1., 1.1)

2.4.2 Constrained minimization of multivariate scalar functions (minimize)

The minimize function provides algorithms for constrained minimization, namely 'trust-constr' , 'SLSQP'
and 'COBYLA'. They require the constraints to be defined using slightly different structures. The method
'"trust-constr' requires the constraints to be defined as a sequence of objects LinearConstraint and Non—
linearConstraint. Methods 'SLSQP ' and 'COBYLA'', on the other hand, require constraints to be defined as a
sequence of dictionaries, with keys t ype, fun and jac.

As an example let us consider the constrained minimization of the Rosenbrock function:

min 100 (xl — x%)Q +(1- xo)2

To,T1
subject to: To+2r1 <1
x?, +21 <1
x% —x1 <1
200 +x1 =1
0<z9<1
—05 <21 <2.0.

This optimization problem has the unique solution [xg,z1] = [0.4149, 0.1701], for which only the first and fourth
constraints are active.

Trust-Region Constrained Algorithm (method="'trust-constr')

The trust-region constrained method deals with constrained minimization problems of the form:

min f(x)
T
subject to: d <e(x) <,
o<z <at

When cé- = ¢} the method reads the j-th constraint as an equality constraint and deals with it accordingly. Besides that,
one-sided constraint can be specified by setting the upper or lower bound to np . inf with the appropriate sign.

The implementation is based on [EQSQP] for equality-constraint problems and on [TRIP] for problems with inequality
constraints. Both are trust-region type algorithms suitable for large-scale problems.

2.4. Optimization (scipy.optimize) 33

SciPy Reference Guide, Release 1.8.0

Defining Bounds Constraints:

The bound constraints 0 < g < 1 and —0.5 < x1 < 2.0 are defined using a Bounds object.

>>> from scipy.optimize import Bounds
>>> bounds = Bounds ([0, -0.5], [1.0, 2.0])

Defining Linear Constraints:

The constraints xg + 221 < 1 and 2x¢ 4+ x1 = 1 can be written in the linear constraint standard format:

=B AR =)

and defined using a LinearConstraint object.

>>> from scipy.optimize import LinearConstraint
>>> linear_constraint = LinearConstraint([[1, 2], [2, 111, [-np.inf, 11, [1,-
=11)

Defining Nonlinear Constraints:

The nonlinear constraint:
with Jacobian matrix:

and linear combination of the Hessians:
1
2 0 2 0
_ 72 _
H(z,v) = ;vlv ci(z) = vo [0 O} + vy [O 0] ,

is defined using a NonlinearConstraint object.

>>> def cons_f (x):

e return [x[0]**2 + x[1], x[0]**2 — x[1]]

>>> def cons_J(X):

ce return [[2*x([0], 11, [2*x[0], -11]

>>> def cons_H(x, Vv):

Ce . return v[0]*np.array([[2, 0], [0, 01]) + v[l]*np.array([[2, 0], [0,-
~011)
>>> from scipy.optimize import NonlinearConstraint

>>> nonlinear_constraint = NonlinearConstraint (cons_f, -np.inf, 1, Jjac=cons_J,
- hess=cons_H)

Alternatively, it is also possible to define the Hessian H (x, v) as a sparse matrix,

>>> from scipy.sparse import csc_matrix
>>> def cons_H_sparse(x, V):
c. return v[0]*csc_matrix([[2, 0], [0, 0]1]1) + v[l]*csc_matrix([[2, O0],_
- [0, 011)
>>> nonlinear_constraint = NonlinearConstraint (cons_f, -np.inf, 1,

jac=cons_J, hess=cons_H_sparse)

orasa LinearOperator object.

34 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

>>> from scipy.sparse.linalg import LinearOperator
>>> def cons_H_linear_operator(x, Vv):
def matvec (p) :

return np.array ([pl[0]*2*(v[0]+v[1]), O1)
.. return LinearOperator((2, 2), matvec=matvec)
>>> nonlinear_constraint = NonlinearConstraint (cons_f, -np.inf, 1,
c. jac=cons_J, hess=cons_H_linear_
—operator)

When the evaluation of the Hessian H (x,v) is difficult to implement or computationally infeasible, one may use Hes—
sianUpdateStrategy. Currently available strategies are BFGS and SR1.

>>> from scipy.optimize import BFGS
>>> nonlinear_constraint = NonlinearConstraint (cons_f, -np.inf, 1, Jjac=cons_J,
— hess=BFGS())

Alternatively, the Hessian may be approximated using finite differences.

>>> nonlinear_constraint = NonlinearConstraint (cons_f, -np.inf, 1, jac=cons_J,
— hess='2-point")

The Jacobian of the constraints can be approximated by finite differences as well. In this case, however, the Hessian cannot
be computed with finite differences and needs to be provided by the user or defined using HessianUpdateStrategy.

>>> nonlinear_constraint = NonlinearConstraint (cons_f, -np.inf, 1, Jjac='2-
—point', hess=BFGS())

Solving the Optimization Problem:

The optimization problem is solved using:

>>> x0 = np.array([0.5, 0])

>>> res = minimize (rosen, x0, method='trust-constr', Jjac=rosen_der, .
—~hess=rosen_hess,

constraints=[linear_constraint, nonlinear_constraint],
e options={'verbose': 1}, bounds=bounds)

may vary
‘gtol® termination condition is satisfied.

Number of iterations: 12, function evaluations: 8, CG iterations: 7,._
—optimality: 2.99e-09, constraint violation: 1.11e-16, execution time: 0.016_
—S.

>>> print (res.x)

[0.41494531 0.17010937]

When needed, the objective function Hessian can be defined using a Li nearOperator object,

>>> def rosen_hess_linop(x):
def matvec (p) :
return rosen_hess_p(x, p)
.. return LinearOperator ((2, 2), matvec=matvec)
>>> res = minimize (rosen, x0, method='trust-constr', Jjac=rosen_der, .
—hess=rosen_hess_linop,
constraints=[linear_constraint, nonlinear_constraint],
options={'verbose': 1}, bounds=bounds)

(continues on next page)

2.4. Optimization (scipy.optimize) 35

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

may vary

"gtol® termination condition is satisfied.

Number of iterations: 12, function evaluations: 8, CG iterations: 7,.
—optimality: 2.99e-09, constraint violation: 1.11e-16, execution time: 0.018_
=S,

>>> print (res.x)

[0.41494531 0.17010937]

or a Hessian-vector product through the parameter hessp.

>>> res = minimize (rosen, x0, method='trust-constr', Jjac=rosen_der, .
—hessp=rosen_hess_p,

constraints=[linear_constraint, nonlinear_constraint],
C. options={"'verbose': 1}, bounds=bounds)

may vary
‘gtol® termination condition is satisfied.

Number of iterations: 12, function evaluations: 8, CG iterations: 7,.
—optimality: 2.99e-09, constraint violation: 1.11le-16, execution time: 0.018.
S.

>>> print (res.x)

[0.41494531 0.17010937]

Alternatively, the first and second derivatives of the objective function can be approximated. For instance, the Hessian
can be approximated with SR1 quasi-Newton approximation and the gradient with finite differences.

>>> from scipy.optimize import SR1

>>> res = minimize (rosen, x0, method='trust-constr', jac="2-point", .
—~hess=SR1 (),

constraints=[linear_constraint, nonlinear_constraint],
c. options={'verbose': 1}, bounds=bounds)

may vary
"gtol® termination condition is satisfied.

Number of iterations: 12, function evaluations: 24, CG iterations: 7,.
—optimality: 4.48e-09, constraint violation: 0.00e+00, execution time: 0.016_
—S.

>>> print (res.x)

[0.41494531 0.17010937]

Sequential Least SQuares Programming (SLSQP) Algorithm (method="'SLSQP"')

The SLSQP method deals with constrained minimization problems of the form:

min f(z)
subject to: cj(x) =0, jeé
cj(r) >0, jeI

lbz < Z; < ubi, 1= 1, ,N

Where £ or 7 are sets of indices containing equality and inequality constraints.

Both linear and nonlinear constraints are defined as dictionaries with keys t ype, fun and jac.

36 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

>>> ineq _cons = {'type': 'ineq',
"fun' : lambda x: np.array ([l - x[0] - 2*x[1],
1 - x[0]1**2 - x[17,
1 = x[0]**2 + x[1]11]),
'Jac' : lambda x: np.array([[-1.0, -2.0],
[-2*x[0], -1.01,
ce [-2*x[0], 1.011)}
>>> eqg_cons = {'type': 'eq',
"fun' : lambda x: np.array([2*x[0] + x[1] - 11),
'jac' : lambda x: np.array([2.0, 1.01)}
And the optimization problem is solved with:
>>> x0 = np.array([0.5, 0])
>>> res = minimize(rosen, x0, method='SLSQP', jac=rosen_der,
constraints=[eq_cons, ineq cons], options={'ftol': 1e-9,

—'disp': True},
c bounds=bounds)
may vary
Optimization terminated successfully. (Exit mode 0)
Current function value: 0.342717574857755
Iterations: 5
Function evaluations: 6
Gradient evaluations: 5
>>> print (res.x)
[0.41494475 0.1701105]

Most of the options available for the method 't rust-constr' are not available for ' SLSQP'.

2.4.3 Global optimization

Global optimization aims to find the global minimum of a function within given bounds, in the presence of potentially
many local minima. Typically, global minimizers efficiently search the parameter space, while using a local minimizer
(e.g., minimize) under the hood. SciPy contains a number of good global optimizers. Here, we’ll use those on the
same objective function, namely the (aptly named) eggholder function:

>>> def eggholder (x):

return (- (x[1] + 47) * np.sin(np.sqgrt(abs(x[0]/2 + (x[1] + 47))))
-x[0] * np.sin(np.sqgrt (abs(x[0] - (x[1] + 47)))))
>>> bounds = [(-512, 512), (=512, 512)]

This function looks like an egg carton:

>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.mplot3d import Axes3D

>>> x = np.arange(-512, 513)

>>> y = np.arange(-512, 513)

>>> xgrid, ygrid = np.meshgrid(x, vy)
>>> xy = np.stack([xgrid, ygridl])

(continues on next page)

2.4. Optimization (scipy.optimize) 37

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> fig
>>> ax =

plt.figure()
fig.add_subplot (111, projection='3d")

>>> ax.view_init (45, -45)
>>> ax.plot_surface(xgrid, ygrid, eggholder (xy), cmap='terrain')
>>> ax.set_xlabel('x")

>>> ax.set_ylabel ('y'")

>>> ax.set_zlabel ('eggholder (x, vy)"')
>>> plt.show ()

We now use the global optimizers to obtain the minimum and the function value at the minimum. We’ll store the results
in a dictionary so we can compare different optimization results later.

>>> from scipy import optimize

>>> results = dict ()
>>> results['shgo'] = optimize.shgo(eggholder, bounds)
>>> results|['shgo']
fun: -935.3379515604197 # may vary
funl: array([-935.33795156])
message: 'Optimization terminated successfully.'
nfev: 42
nit: 2
nlfev: 37
nlhev: 0
nljev: 9
success: True
x: array ([439.48096952, 453.97740589])
x1: array ([[439.48096952, 453.97740589]1])

38

Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

>>> results['DA'] = optimize.dual_annealing(eggholder, bounds)
>>> results['DA']
fun: -956.9182316237413 # may vary

message: ['Maximum number of iteration reached']
nfev: 4091
nhev: 0
nit: 1000
njev: O

x: array ([482.35324114, 432.878929011)

All optimizers return an Opt imizeResult, which in addition to the solution contains information on the number of
function evaluations, whether the optimization was successful, and more. For brevity, we won’t show the full output of
the other optimizers:

>>> results['DE'] = optimize.differential_evolution (eggholder, bounds)
>>> results['BH'] optimize.basinhopping (eggholder, bounds)

shgo has a second method, which returns all local minima rather than only what it thinks is the global minimum:

>>> results['shgo_sobol'] = optimize.shgo(eggholder, bounds, n=200, iters=5,
sampling_method="sobol")

We'll now plot all found minima on a heatmap of the function:

>>> fig = plt.figure()
>>> ax = fig.add_subplot (111)
>>> im = ax.imshow(eggholder (xy), interpolation='bilinear', origin='lower',
cmap="gray')
>>> ax.set_xlabel ('x")
>>> ax.set_ylabel('y")
>>>
>>> def plot_point (res, marker='o', color=None) :
ax.plot (512+res.x[0], 512+res.x[1l], marker=marker, color=color, ms=10)

>>> plot_point (results['BH'], color='y") # basinhopping - yellow
>>> plot_point (results['DE'], color='c') # differential_evolution - cyan
>>> plot_point (results['DA"'"], color='w') # dual_annealing. - white

>>> # SHGO produces multiple minima, plot them all (with a smaller marker.
—wsize)
>>> plot_point (results['shgo'], color='r', marker='+")
>>> plot_point (results|['shgo_sobol']l, color='r', marker='x")
>>> for i in range(results|['shgo_sobol'].x1l.shape[0]):
ax.plot (512 + results|['shgo_sobol']l.x1[1i, 0],
512 + results]['shgo_sobol'].x1[i, 11,
'ro', ms=2)

>>> ax.set_xlim([-4, 514*2])
>>> ax.set_ylim([-4, 514*2])
>>> plt.show ()

2.4. Optimization (scipy.optimize) 39

SciPy Reference Guide, Release 1.8.0

1000

800

600

400

200

0 200 400 600 800 1000

2.4.4 Least-squares minimization (Least_squares)

SciPy is capable of solving robustified bound-constrained nonlinear least-squares problems:

& 2
ming 2 ¢ (£:(°) @4
subject to Ib < x < ub 2.5)

Here f;(x) are smooth functions from R™ to R, we refer to them as residuals. The purpose of a scalar-valued function
p(+) is to reduce the influence of outlier residuals and contribute to robustness of the solution, we refer to it as a loss
function. A linear loss function gives a standard least-squares problem. Additionally, constraints in a form of lower and
upper bounds on some of x; are allowed.

All methods specific to least-squares minimization utilize a m x n matrix of partial derivatives called Jacobian and defined
as J;; = 0f;/Ox;. It is highly recommended to compute this matrix analytically and pass it to least_squares,
otherwise, it will be estimated by finite differences, which takes a lot of additional time and can be very inaccurate in hard
cases.

Function least_squares can be used for fitting a function ¢(¢;x) to empirical data {(¢;,y;),i = 0,...,m — 1}.
To do this, one should simply precompute residuals as f;(x) = w; (p(;;x) — y;), where w; are weights assigned to each
observation.

40 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Example of solving a fitting problem

Here we consider an enzymatic reaction'. There are 11 residuals defined as

2
o (’UJi —+ u;) 3
f7(x):2—7yl7 7’:0""7107
u; + uixo + T3
where y; are measurement values and w; are values of the independent variable. The unknown vector of parameters is
x = (wg, 1,22, 73)T. As was said previously, it is recommended to compute Jacobian matrix in a closed form:

Tio = gf = % 2.6)
Jin = gg 1 = % @7
iz = g—j:; =- éﬁfjx’jf;jy 2.8)
o= e = R v @)

We are going to use the “hard” starting point defined in’. To find a physically meaningful solution, avoid potential division
by zero and assure convergence to the global minimum we impose constraints 0 < z; < 100,57 =0, 1,2, 3.

The code below implements least-squares estimation of x and finally plots the original data and the fitted model function:

>>> from scipy.optimize import least_squares

>>> def model (x, u):
return x[0] * (u ** 2 + x[1] * u) / (u ** 2 + x[2] * u + x[3])

>>> def fun(x, u, y):
return model (x, u) - vy

>>> def jac(x, u, y):
J = np.empty((u.size, x.size))
den = u ** 2 + x[2] * u + x[3]
num = u ** 2 + x[1] * u

J[:, 0] = num / den

J[:, 1] = x[0] * u / den

J[l:, 2] = —x[0] * num * u / den ** 2
J[:, 3] = -x[0] * num / den ** 2

return J

>>> u = np.array([4.0, 2.0, 1.0, 5.0e-1, 2.5e-1, 1.67e-1, 1.25e-1, 1.0e-1,
ce 8.33e-2, 7.14e-2, 6.25e-21])

>>> y = np.array([1.957e-1, 1.947e-1, 1.735e-1, 1.6e-1, 8.44e-2, 6.27e-2,
ce 4.56e-2, 3.42e-2, 3.23e-2, 2.35e-2, 2.46e-21])

>>> x0 = np.array([2.5, 3.9, 4.15, 3.91)

>>> res = least_squares (fun, x0, jac=jac, bounds=(0, 100), args=(u, V),-—
—verbose=1)

(continues on next page)

1 . Kowalik and J. F. Morrison, “Analysis of kinetic data for allosteric enzyme reactions as a nonlinear regression problem”, Math. Biosci., vol. 2,
pp- 57-66, 1968.
2

B. M. Averick et al., “The MINPACK-2 Test Problem Collection”.

2.4. Optimization (scipy.optimize) 41

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

may vary
"ftol® termination condition is satisfied.
Function evaluations 130, initial cost 4.4383e+00,
—first-order optimality 4.92e-08.

>>> res.x

array ([0.1928059¢6,

0.19130423, 0.12306063,

final cost 1.5375e-04, .

0.1360724717)

>>> import matplotlib.pyplot as plt
>>> u_test = np.linspace (0, 5)
>>> y_test = model (res.x, u_test)
>>> plt.plot(u, vy, 'o', markersize=4, label='data')
>>> plt.plot (u_test, y_test, label='fitted model')
>>> plt.xlabel ("u")
>>> plt.ylabel ("y")
>>> plt.legend(loc="'lower right')
>>> plt.show ()
0.20 . -
°
)
0.15 +
> 0.10 A
»
0
005 N 0
[e data
fitted model
0.00 A
T T T T T T
0 1 2 3 4 5

Further examples

Three interactive examples below illustrate usage of 1east_squares in greater detail.

1. Large-scale bundle adjustment in scipy demonstrates large-scale capabilities of Ieast_squares and how to

efficiently compute finite difference approximation of sparse Jacobian.

2. Robust nonlinear regression in scipy shows how to handle outliers with a robust loss function in a nonlinear regres-

sion.

3. Solving a discrete boundary-value problem in scipy examines how to solve a large system of equations and use

bounds to achieve desired properties of the solution.

For the details about mathematical algorithms behind the implementation refer to documentation of 1east_squares.

42

Chapter 2. SciPy User Guide

https://scipy-cookbook.readthedocs.io/items/bundle_adjustment.html
https://scipy-cookbook.readthedocs.io/items/robust_regression.html
https://scipy-cookbook.readthedocs.io/items/discrete_bvp.html

SciPy Reference Guide, Release 1.8.0

2.4.5 Univariate function minimizers (minimize_scalar)

Often only the minimum of an univariate function (i.e., a function that takes a scalar as input) is needed. In these
circumstances, other optimization techniques have been developed that can work faster. These are accessible from the
minimize_scalar function, which proposes several algorithms.

Unconstrained minimization (method="'brent ')

There are, actually, two methods that can be used to minimize an univariate function: brent and golden, but golden
is included only for academic purposes and should rarely be used. These can be respectively selected through the method
parameter in minimize_scalar. The brent method uses Brent’s algorithm for locating a minimum. Optimally, a
bracket (the bracket parameter) should be given which contains the minimum desired. A bracket is a triple (a, b, ¢)
such that f (a) > f (b) < f (c) and @ < b < c. If this is not given, then alternatively two starting points can be chosen
and a bracket will be found from these points using a simple marching algorithm. If these two starting points are not
provided, 0 and 7 will be used (this may not be the right choice for your function and result in an unexpected minimum
being returned).

Here is an example:

>>> from scipy.optimize import minimize_scalar
>>> f = lambda x: (x — 2) * (x + 1)**2

>>> res = minimize_scalar (f, method='brent"')
>>> print (res.x)
1.0

Bounded minimization (method="'bounded')

Very often, there are constraints that can be placed on the solution space before minimization occurs. The bounded
method in minimize_scalar is an example of a constrained minimization procedure that provides a rudimentary
interval constraint for scalar functions. The interval constraint allows the minimization to occur only between two fixed
endpoints, specified using the mandatory bounds parameter.

For example, to find the minimum of .J; (z) near x = 5, minimize_scalar can be called using the interval [4, 7]
as a constraint. The result is z;, = 5.3314 :

>>> from scipy.special import jl

>>> res = minimize_scalar(jl, bounds=(4, 7), method='bounded')
>>> res.x

5.33144184241

2.4.6 Custom minimizers
Sometimes, it may be useful to use a custom method as a (multivariate or univariate) minimizer, for example, when using
some library wrappers of minimize (e.g., basinhopping).

We can achieve that by, instead of passing a method name, passing a callable (either a function or an object implementing
a __call__method) as the method parameter.

Let us consider an (admittedly rather virtual) need to use a trivial custom multivariate minimization method that will just
search the neighborhood in each dimension independently with a fixed step size:

2.4. Optimization (scipy.optimize) 43

SciPy Reference Guide, Release 1.8.0

>>> from scipy.optimize import OptimizeResult
>>> def custmin (fun, x0, args=(), maxfev=None, stepsize=0.1,
maxiter=100, callback=None, **options):
bestx = x0

besty = fun (x0)
funcalls = 1
niter = 0
improved = True

stop = False

while improved and not stop and niter < maxiter:
improved = False
niter += 1
for dim in range(np.size(x0)):

for s in [bestx[dim] - stepsize, bestx[dim] + stepsize]:
testx = np.copy (bestx)
testx[dim] = s
testy = fun(testx, *args)

funcalls += 1
if testy < besty:
besty = testy
bestx = testx
improved = True
if callback is not None:
callback (bestx)
if maxfev is not None and funcalls >= maxfev:
stop = True
break

return OptimizeResult (fun=besty, x=bestx, nit=niter,
c. nfev=funcalls, success=(niter > 1))
>>> x0 = [1.35, 0.9, 0.8, 1.1, 1.2]
>>> res = minimize (rosen, x0, method=custmin, options=dict (stepsize=0.05))
>>> res.x
array([1., 1., 1., 1., 1.1)

This will work just as well in case of univariate optimization:

>>> def custmin (fun, bracket, args=(), maxfev=None, stepsize=0.1,
maxiter=100, callback=None, **options):
bestx = (bracket[1] + bracket[0]) / 2.0
besty = fun (bestx)
funcalls = 1
niter = 0

improved = True
stop = False

while improved and not stop and niter < maxiter:
improved = False
niter += 1
for testx in [bestx - stepsize, bestx + stepsize]:
testy = fun(testx, *args)
funcalls += 1

(continues on next page)

44 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

if testy < besty:
besty = testy
bestx = testx
improved = True
if callback is not None:
callback (bestx)
if maxfev is not None and funcalls >= maxfev:
stop = True
break

return OptimizeResult (fun=besty, x=bestx, nit=niter,
c. nfev=funcalls, success=(niter > 1))
>>> def f(x):

. return (x — 2)**2 * (x + 2)**2
>>> res = minimize_scalar (f, bracket=(-3.5, 0), method=custmin,
options=dict (stepsize = 0.05))

>>> res.x
-2.0

2.4.7 Root finding

Scalar functions

If one has a single-variable equation, there are multiple different root finding algorithms that can be tried. Most of these
algorithms require the endpoints of an interval in which a root is expected (because the function changes signs). In general,
brentq is the best choice, but the other methods may be useful in certain circumstances or for academic purposes.
When a bracket is not available, but one or more derivatives are available, then newton (or halley, secant) may
be applicable. This is especially the case if the function is defined on a subset of the complex plane, and the bracketing
methods cannot be used.

Fixed-point solving

A problem closely related to finding the zeros of a function is the problem of finding a fixed point of a function. A fixed
point of a function is the point at which evaluation of the function returns the point: g (x) = . Clearly, the fixed point
of g is the root of f () = g (x) — =. Equivalently, the root of f is the fixed point of g () = f (z) + . The routine
fixed_point provides a simple iterative method using Aitkens sequence acceleration to estimate the fixed point of g
given a starting point.

Sets of equations

Finding a root of a set of non-linear equations can be achieved using the root function. Several methods are available,
amongst which hybr (the default) and 1m, which, respectively, use the hybrid method of Powell and the Levenberg-
Marquardt method from MINPACK.

The following example considers the single-variable transcendental equation
x+2cos(z) =0,

a root of which can be found as follows:

2.4. Optimization (scipy.optimize) 45

SciPy Reference Guide, Release 1.8.0

>>> import numpy as np

>>> from scipy.optimize import root
>>> def func (x):

c. return x + 2 * np.cos(x)
>>> sol = root (func, 0.3)

>>> sol.x

array ([-1.029866531])

>>> sol.fun

array ([-6.66133815e-16])

Consider now a set of non-linear equations

xocos(x1) = 4,
5.

ToT1 — Z1

We define the objective function so that it also returns the Jacobian and indicate this by setting the jac parameter to
True. Also, the Levenberg-Marquardt solver is used here.

>>> def func2(x):

f = [x[0] * np.cos(x[1]) - 4,
x[1]*x[0] - x[1] - 5]
df = np.array([[np.cos(x[1]), —-x[0] * np.sin(x[1])],
[x[1], x[0] — 111)

.. return f, df

>>> sol = root (func2, [1, 1], jac=True, method="lm'")
>>> sol.x

array ([6.50409711, 0.908414211)

Root finding for large problems

Methods hybr and 1m in root cannot deal with a very large number of variables (), as they need to calculate and
invert a dense N x N Jacobian matrix on every Newton step. This becomes rather inefficient when N grows.

Consider, for instance, the following problem: we need to solve the following integrodifferential equation on the square
[0,1] x [0,1]:

2

11
(834—85)19—1—5(/0 /0 cosh(P)dwdy) =0

with the boundary condition P(x,1) = 1 on the upper edge and P = 0 elsewhere on the boundary of the square. This
can be done by approximating the continuous function P by its values on a grid, P, ., = P(nh, mh), with a small grid
spacing h. The derivatives and integrals can then be approximated; for instance 92 P(z,y) ~ (P(z +h,y) —2P(z,y) +
P(z — h,y))/h?. The problem is then equivalent to finding the root of some function residual (P), where P is a
vector of length N, N,,.

Now, because IV IV, can be large, methods hybr or 1min root will take a long time to solve this problem. The solution
can, however, be found using one of the large-scale solvers, for example krylov, broyden2, or anderson. These
use what is known as the inexact Newton method, which instead of computing the Jacobian matrix exactly, forms an
approximation for it.

The problem we have can now be solved as follows:

46 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

import numpy as np
from scipy.optimize import root
from numpy import cosh, zeros_like, mgrid, zeros

parameters
nx, ny = 75, 75
hx, hy = 1./ (nx-1), 1./ (ny-1)

I
o
~
o

P_left, P_right =
P_top, P_bottom = 1, O

def residual (P):
d2x = zeros_like (P)

d2y = zeros_like (P)

d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx
d2x[0] = (P[1] - 2*P[0] + P_left) /hx/hx
d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx
d2y[:,1:-1] = (P[:,2:] — 2*P[:,1:-1] + P[:,:-2])/hy/hy
d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom) /hy/hy
d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2]1)/hy/hy

return d2x + d2y + 5*cosh(P) .mean () **2

solve

guess = zeros((nx, ny), float)

sol = root (residual, guess, method='krylov', options={'disp': True})

#sol = root (residual, guess, method='broyden2', options={'disp': True, 'max
—rank': 50})

#sol = root (residual, guess, method='anderson', options={'disp': True, 'M':.
~10})

print ('"Residual: %g' % abs(residual (sol.x)) .max())

visualize

import matplotlib.pyplot as plt

X, vy = mgrid[0:1: (nx*1j), O0:1l:(ny*17)]
plt.pcolormesh(x, y, sol.x, shading='gouraud'")
plt.colorbar ()

plt.show()

Still too slow? Preconditioning.

When looking for the zero of the functions f;(x) = 0,i=1, 2, ..., N, the krylov solver spends most of the time
inverting the Jacobian matrix,

oF

Jﬁ = éli.
Zj

If you have an approximation for the inverse matrix M = J~!, you can use it for preconditioning the linear-inversion

problem. The idea is that instead of solving Js = y one solves M Js = My: since matrix M J is “closer” to the identity

matrix than J is, the equation should be easier for the Krylov method to deal with.

2.4. Optimization (scipy.optimize) 47

SciPy Reference Guide, Release 1.8.0

The matrix M can be passed to root with method krylov as an option op-—
tions['Jjac_options']['inner_M']. It can be a (sparse) matrix or a scipy.sparse.linalg.
LinearOperator instance.

For the problem in the previous section, we note that the function to solve consists of two parts: the first one is the
application of the Laplace operator, [02 + 6§]P, and the second is the integral. We can actually easily compute the

Jacobian corresponding to the Laplace operator part: we know that in 1-D
—92 1 0 0---

1 1 -2 1 0-- 9

Ao 1 2 1| TE

so that the whole 2-D operator is represented by
J=02+02=h*L@l+h*I®L

The matrix J» of the Jacobian corresponding to the integral is more difficult to calculate, and since all of it entries are
nonzero, it will be difficult to invert. J; on the other hand is a relatively simple matrix, and can be inverted by scipy.
sparse.linalg.splu (or the inverse can be approximated by scipy. sparse.linalg.spilu). So we are
content to take M = .J; ! and hope for the best.

In the example below, we use the preconditioner M = J; 1

import numpy as np

from scipy.optimize import root

from scipy.sparse import spdiags, kron

from scipy.sparse.linalg import spilu, LinearOperator
from numpy import cosh, zeros_like, mgrid, zeros, eye

parameters
nx, ny = 75, 75
hx, hy = 1./ (nx-1), 1./ (ny-1)

P_left, P_right =
P_top, P_bottom = 1, O

I
o
~
o

(continues on next page)

48 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

def get_preconditioner():
"""Compute the preconditioner M"""

diags_x = zeros((3, nx))

diags_x[0,:] = 1/hx/hx

diags_x[1,:] = -2/hx/hx

diags_x[2,:] = 1/hx/hx

Lx = spdiags(diags_x, [-1,0,1], nx, nx)
diags_y = zeros((3, ny))

diags_y[0,:] = 1/hy/hy

diags_y[1,:] = -2/hy/hy

diags_y[2,:] = 1/hy/hy

Ly = spdiags(diags_y, [-1,0,1], ny, ny)
J1l = kron(Lx, eye(ny)) + kron(eye(nx), Ly)

Now we have the matrix "J_1°'. We need to find its inverse "M —-—
however, since an approximate inverse 1is enough, we can use
the *incomplete LU* decomposition

J1_ilu = spilu(Jl)

This returns an object with a method .solve() that evaluates
the corresponding matrix-vector product. We need to wrap it into
a LinearOperator before it can be passed to the Krylov methods:

M = LinearOperator (shape=(nx*ny, nx*ny), matvec=J1_ilu.solve)
return M

def solve (preconditioning=True) :
"""Compute the solution"""
count = [0]

def residual (P) :
count [0] += 1

d2x zeros_like (P)
d2y = zeros_like (P)

d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2])/hx/hx
d2x[0] = (P[1] - 2*P[0] + P_left) /hx/hx
d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx
d2y[:,1:-1] = (P[:,2:] — 2*P[:,1:-1] + P[:,:-2])/hy/hy
d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom) /hy/hy
d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy

return d2x + d2y + 5*cosh(P) .mean () **2

preconditioner
if preconditioning:

(continues on next page)

2.4. Optimization (scipy.optimize)

49

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

M = get_preconditioner ()
else:
M = None

solve
guess = zeros((nx, ny), float)

sol = root (residual, guess, method='krylov',
options={'disp': True,

'jac_options': {'inner_ M':

print ('Residual', abs(residual(sol.x)) .max())
print ('Evaluations', count[0])

return sol.x

def main() :
sol = solve(preconditioning=True)

visualize

import matplotlib.pyplot as plt

X, y = mgrid[0:1: (nx*1j), O0:1:(ny*17)]
plt.clf ()

plt.pcolor(x, y, sol)

plt.clim (0, 1)

plt.colorbar ()

plt.show ()

if name == "__main_ ":

main ()

Resulting run, first without preconditioning:

0: |[F(x)| = 803.614; step 1; tol 0.000257947

1: |[F(x)| = 345.912; step 1; tol 0.166755

2 [F(x)| = 139.159; step 1; tol 0.145657

3: [F(x)| = 27.3682; step 1; tol 0.0348109

4 [F(x)| = 1.03303; step 1; tol 0.00128227

5: [F(x)| = 0.0406634; step 1; tol 0.00139451
6: [F(x)| = 0.00344341; step 1; tol 0.00645373
7: [F(x)| = 0.000153671; step 1; tol 0.00179246
8: [F(x)| = 6.7424e-06; step 1; tol 0.00173256

Residual 3.57078908664e-07
Evaluations 317

and then with preconditioning:

0 [F(x)| = 136.993; step 1; tol 7.49599e-06

1 |[F(x)| = 4.80983; step 1; tol 0.00110945

2 [F(x)| = 0.195942; step 1; tol 0.00149362

3 [F(x)| = 0.000563597; step 1; tol 7.44604e-06
4 [F(x)| = 1.00698e-09; step 1; tol 2.87308e-12

(continues on next page)

50

Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

Residual 9.29603061195e-11
Evaluations 77

Using a preconditioner reduced the number of evaluations of the residual function by a factor of 4. For problems
where the residual is expensive to compute, good preconditioning can be crucial — it can even decide whether the problem
is solvable in practice or not.

Preconditioning is an art, science, and industry. Here, we were lucky in making a simple choice that worked reasonably
well, but there is a lot more depth to this topic than is shown here.

2.4.8 Linear programming (1inprog)

The function 1 inprog can minimize a linear objective function subject to linear equality and inequality constraints.
This kind of problem is well known as linear programming. Linear programming solves problems of the following form:

min ¢’z

x

such that A,pz < byp,
Aeq-T = beqa
<z <u,

where z is a vector of decision variables; ¢, by, beg, [, and u are vectors; and A, and A, are matrices.

In this tutorial, we will try to solve a typical linear programming problem using 1 inprog.

Linear programming example

Consider the following simple linear programming problem:

max 29z + 4525

@1,@2,03,54
such that x1 — 22 — 323 <5
2x1 — 3x9 — Txg + 324 > 10
2x1 4+ 8x2 + 3 = 60
4x1 + 4o + x4 = 60
0<zg
0<2r1<H5
To < 0.5
—3< a3

We need some mathematical manipulations to convert the target problem to the form accepted by 1 inprog.

First of all, let’s consider the objective function. We want to maximize the objective function, but 1inprog can only
accept a minimization problem. This is easily remedied by converting the maximize 292, +45x5 to minimizing —29z; —
45x5. Also, x3, x4 are not shown in the objective function. That means the weights corresponding with 3, x4 are zero.
So, the objective function can be converted to:
min —29x1 — 4529 + 0x3 + Oy
Z1,22,T3,T4

If we define the vector of decision variables & = |11, 72, 23, 74]7, the objective weights vector ¢ of 1inprog in this
problem should be

c=[-29,-45,0,0]"

2.4. Optimization (scipy.optimize) 51

SciPy Reference Guide, Release 1.8.0

Next, let’s consider the two inequality constraints. The first one is a “less than” inequality, so it is already in the form
accepted by 1 i nprog. The second one is a “greater than” inequality, so we need to multiply both sides by —1 to convert
it to a “less than” inequality. Explicitly showing zero coefficients, we have:

I —1'2—31'3+0$4 §5
—2$1 + 3932 + 71‘3 — 3:174 S —10

These equations can be converted to matrix form:
Aubx < bub
where

1 -1 -3 0
A“”_[—2 307 —3}

5
bup = [—10}

Next, let’s consider the two equality constraints. Showing zero weights explicitly, these are:

2:61 + 81’2 +].1‘3 + OIL‘4 =60
4z + 4xo + 0x3 + 1y = 60

These equations can be converted to matrix form:

Aeqgt = beg
where
2 8 1 0
Aeg = [4 4 0 1]
60
o= (o0

Lastly, let’s consider the separate inequality constraints on individual decision variables, which are known as “box con-
straints” or “simple bounds”. These constraints can be applied using the bounds argument of 1 inprog. As noted in the
1inprog documentation, the default value of bounds is (0, None), meaning that the lower bound on each decision
variable is 0, and the upper bound on each decision variable is infinity: all the decision variables are non-negative. Our
bounds are different, so we will need to specify the lower and upper bound on each decision variable as a tuple and group
these tuples into a list.

Finally, we can solve the transformed problem using 1 inprog.

>>> import numpy as np

>>> from scipy.optimize import linprog

>>> ¢ = np.array([-29.0, -45.0, 0.0, 0.01])

>>> A_ub = np.array([[1.0, -1.0, -3.0, 0.0],
.0, =3.011)

[-2.0, 3.0, 7
>>> b_ub = np.array([5.0, -10.01)
>>> A_eq = np.array([[2.0, 8.0, 1.0, 0.0],
ce (4.0, 4.0, 0.0, 1.011)
>>> b_eq = np.array([60.0, 60.01)
>>> x0_bounds = (0, None)
>>> x1_bounds = (0, 5.0)
>>> x2_bounds = (-np.inf, 0.5) # +/—- np.inf can be used instead of None
>>> x3_bounds = (-3.0, None)
>>> bounds = [x0_bounds, x1_bounds, x2_bounds, x3_bounds]

(continues on next page)

52 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> result = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eg=A_eq, b_eg=b_eq, .
—bounds=bounds)
>>> print (result)

con: array([15.5361242 , 16.61288005]) # may vary
fun: -370.2321976308326 # may vary
message: 'The algorithm terminated successfully and determined that the.

—problem is infeasible.'’
nit: 6 # may vary
slack: array ([0.79314989, -1.76308532]) # may vary
status: 2
success: False
x: array ([6.60059391, 3.97366609, -0.52664076, 1.09007993]) # may.
—vary

The result states that our problem is infeasible, meaning that there is no solution vector that satisfies all the constraints.
That doesn’t necessarily mean we did anything wrong; some problems truly are infeasible. Suppose, however, that we
were to decide that our bound constraint on z; was too tight and that it could be loosened to 0 < z; < 6. After adjusting

our code x1_bounds = (0, 6) toreflect the change and executing it again:
>>> x1_bounds = (0, 6)
>>> bounds = [x0_bounds, x1_bounds, x2_bounds, x3_bounds]

>>> result = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eg=A_eq, b_eg=b_eq, .
—bounds=bounds)
>>> print (result)

con: array([9.78840831e-09, 1.04662945e-08]1) # may vary
fun: -505.97435889013434 # may vary
message: 'Optimization terminated successfully.'

nit: 4 # may vary
slack: array ([6.52747190e-10, -2.26730279e-09]) # may vary
status: O
success: True
x: array ([9.41025641, 5.17948718, -0.25641026, 1.64102564]) # may.
vary

The result shows the optimization was successful. We can check the objective value (result . fun) is same as ¢’ z:

>>> x = np.array(result.x)
>>> print (c @ x)
-505.97435889013434 # may vary

We can also check that all constraints are satisfied within reasonable tolerances:

>>> print (b_ub - (A_ub @ x).flatten()) # this is equivalent to result.slack
[6.52747190e-10, -2.26730279e-09] # may vary

>>> print(b_eq - (A_eq @ x).flatten()) # this is equivalent to result.con

[9.78840831e-09, 1.04662945e-08]] # may vary

>>> print ([0 <= result.x[0], 0 <= result.x[1l] <= 6.0, result.x[2] <= 0.5, -3.
0 <= result.x[3]1])

[True, True, True, True]

If we need greater accuracy, typically at the expense of speed, we can solve using the revised simplex method:

2.4. Optimization (scipy.optimize) 53

SciPy Reference Guide, Release 1.8.0

>>> result = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eg=A_eq, b_eg=b_eq, .
—bounds=bounds, method='revised simplex")
>>> print (result)
con: array([0.00000000e+00, 7.10542736e-15]) # may vary
fun: -505.97435897435895 # may vary
message: 'Optimization terminated successfully.'
nit: 5 # may vary
slack: array ([1.77635684e-15, -3.55271368e-15]) # may vary
status: O
success: True
x: array ([9.41025641, 5.17948718, -0.25641026, 1.64102564]) # may.
—vary

2.4.9 Assignment problems

Linear sum assignment problem example

Consider the problem of selecting students for a swimming medley relay team. We have a table showing times for each
swimming style of five students:

Student | backstroke | breaststroke | butterfly | freestyle
A 43.5 47.1 48.4 38.2
B 45.5 42.1 49.6 36.8
C 43.4 39.1 42.1 43.2
D 46.5 44.1 44.5 41.2
E 46.3 47.8 50.4 37.2

We need to choose a student for each of the four swimming styles such that the total relay time is minimized. This is a
typical linear sum assignment problem. We can use 1 inear_sum_assignment to solve it.

The linear sum assignment problem is one of the most famous combinatorial optimization problems. Given a “cost matrix”
C, the problem is to choose

* exactly one element from each row
* without choosing more than one element from any column
* such that the sum of the chosen elements is minimized
In other words, we need to assign each row to one column such that the sum of the corresponding entries is minimized.

Formally, let X be a boolean matrix where X [i, j] = 1 iff row i is assigned to column j. Then the optimal assignment

has cost
min Z Z Ci,in,j
i g

The first step is to define the cost matrix. In this example, we want to assign each swimming style to a student. 1in-—
ear_sum_assignment is able to assign each row of a cost matrix to a column. Therefore, to form the cost matrix,
the table above needs to be transposed so that the rows correspond with swimming styles and the columns correspond
with students:

>>> import numpy as np
>>> cost = np.array ([[43.5, 45.5, 43.4, 46.5, 46.3],

(continues on next page)

54 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

[47.1, 42.1, 39.1, 44.1, 47.8],
[48.4, 49.6, 42.1, 44.5, 50.41,
[38.2, 36.8, 43.2, 41.2, 37.211)

We can solve the assignment problem with 1 inear sum assignment:

>>> from scipy.optimize import linear_sum_assignment
>>> row_ind, col_ind = linear_sum_assignment (cost)

The row_ind and col_ind are optimal assigned matrix indexes of the cost matrix:

>>> row_ind
array ([0, 1, 2, 31)
>>> col_ind
array ([0, 2, 3, 11)

The optimal assignment is:

>>> styles = np.array(["backstroke", "breaststroke", "butterfly", "freestyle
—"]) [row_ind]

>>> students = np.array(["A", "B", "C", "D", "E"])[col_ind]

>>> dict (zip(styles, students))

{'backstroke': 'A', 'breaststroke': 'C', 'butterfly': 'D', 'freestyle': 'B'}

The optimal total medley time is:

>>> cost[row_ind, col_ind].sum()
163.89999999999998

Note that this result is not the same as the sum of the minimum times for each swimming style:

>>> np.min(cost, axis=1).sum()
161.39999999999998

because student “C” is the best swimmer in both “breaststroke” and “butterfly” style. We cannot assign student “C” to
both styles, so we assigned student C to the “breaststroke” style and D to the “butterfly” style to minimize the total time.

References

Some further reading and related software, such as Newton-Krylov [KK], PETSc [PP], and PYAMG [AMG]:

2.5 Interpolation (scipy.interpolate)

Contents

e Interpolation (scipy.interpolate)

— I-D interpolation (interpld)

— Multivariate data interpolation (griddata)

2.5. Interpolation (scipy.interpolate) 55

SciPy Reference Guide, Release 1.8.0

— Spline interpolation
« Spline interpolation in 1-D: Procedural (interpolate.splXXX)
Spline interpolation in 1-d: Object-oriented (UnivariateSpline)
x 2-D spline representation: Procedural (lbisplrep)
« 2-D spline representation: Object-oriented (BivariateSpline)
— Using radial basis functions for smoothing/interpolation

x [-D Example

x 2-D Example

There are several general interpolation facilities available in SciPy, for data in 1, 2, and higher dimensions:
* A class representing an interpolant (i nterpld) in 1-D, offering several interpolation methods.

* Convenience function griddat a offering a simple interface to interpolation in N dimensions (N =1, 2, 3,4, ...).
Object-oriented interface for the underlying routines is also available.

* Functions for 1- and 2-D (smoothed) cubic-spline interpolation, based on the FORTRAN library FITPACK. They
are both procedural and object-oriented interfaces for the FITPACK library.

¢ Interpolation using radial basis functions.

2.5.1 1-D interpolation (interp1ld)

The interplidclassin scipy. interpolateisaconvenient method to create a function based on fixed data points,
which can be evaluated anywhere within the domain defined by the given data using linear interpolation. An instance of
this class is created by passing the 1-D vectors comprising the data. The instance of this class defines a __call__ method
and can therefore by treated like a function which interpolates between known data values to obtain unknown values (it
also has a docstring for help). Behavior at the boundary can be specified at instantiation time. The following example
demonstrates its use, for linear and cubic spline interpolation:

>>> from scipy.interpolate import interpld

>>> x = np.linspace(0, 10, num=11, endpoint=True)
>>> y np.cos (-x**2/9.0)

>>> f = interpld(x, y)

>>> f2 = interpld(x, y, kind='cubic')

>>> xnew = np.linspace (0, 10, num=41, endpoint=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o', xnew, f(xnew), '-', xnew, f2(xnew), '—--')

>>> plt.legend(['data', 'linear', 'cubic'], loc='best')
>>> plt.show ()

Another set of interpolations in i nterpld is nearest, previous, and next, where they return the nearest, previous, or next
point along the x-axis. Nearest and next can be thought of as a special case of a causal interpolating filter. The following
example demonstrates their use, using the same data as in the previous example:

>>> from scipy.interpolate import interpld

56 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

1.0
0.5 A
0.0 -
—-0.541 @ data
- |linear
—1.04 ——- cubic

0 2 4 8 10
>>> x = np.linspace (0, 10, num=11, endpoint=True)
>>> y = np.cos(-x**2/9.0)
>>> f1 = interpld(x, y, kind='nearest')
>>> f2 = interpld(x, y, kind='previous')

>>> f3 = interpld(x, y, kind="next')

>>> xnew = np.linspace (0, 10, num=1001,
>>> import matplotlib.pyplot as plt

>>> plt.plot(x, y, 'o")

>>> plt.plot (xnew, fl(xnew), '-', xnew,

>>> plt.legend(['data', 'nearest',
>>> plt.show ()

'previous',

£f2 (xnew),
'next'], loc='best')

endpoint=True)

-—', xnew, f3(xnew), ':")

1

e L rrrr

o b ——

1.0
0.5 A
0.0 A
® data
—— nearest
—0.5 + .
=== _previous
..... next
-1.0 1 :
0 2

(o]
=
o

2.5. Interpolation (scipy.interpolate)

57

SciPy Reference Guide, Release 1.8.0

2.5.2 Multivariate data interpolation (griddata)

Suppose you have multidimensional data, for instance, for an underlying function f(x, y) you only know the values at
points (x/i], y[i]) that do not form a regular grid.

Suppose we want to interpolate the 2-D function

>>> def func(x, vy):
return x* (1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2

on a grid in [0, 1]x[0, 1]

>>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:2007]

but we only know its values at 1000 data points:

>>> rng = np.random.default_rng()
>>> points = rng.random((1000, 2))
>>> values func (points[:,0], points[:,1])

This can be done with griddata — below, we try out all of the interpolation methods:

>>> from scipy.interpolate import griddata

>>> grid_z0 = griddata(points, wvalues, (grid_x, grid_y), method='nearest')
>>> grid_z1 = griddata (points, values, (grid_x, grid_y), method='linear")
>>> grid_z2 = griddata (points, wvalues, (grid_x, grid_y), method='cubic')

One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function the
piecewise cubic interpolant gives the best results:

>>> import matplotlib.pyplot as plt

>>> plt.subplot (221)

>>> plt.imshow (func(grid_x, grid_y).T, extent=(0,1,0,1), origin='"lower')
>>> plt.plot (points[:,0], points[:,1], 'k.', ms=1)

>>> plt.title('Original')

>>> plt.subplot (222)

>>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower'")
>>> plt.title('Nearest')

>>> plt.subplot (223)

>>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower'")
>>> plt.title('Linear"')

>>> plt.subplot (224)

>>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower'")
>>> plt.title('Cubic")

>>> plt.gcf () .set_size_inches (6, 6)

>>> plt.show ()

58 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Original

1.0

0.8

0.6

0.4

0.2

0.0
0.00 0.25 ,0.50 0.75 1.00
Linear

1.0 1
0.8 -
0.6 -
0.4 -

0.2 4

00 - r 1°r 1

0.00 0.25 0.50 0.75 1.00

Nearest

1.0

0.8

0.6

0.4

0.2

0.0
0.00 0.25 80%9(: 0.75 1.00

1.0 1
0.8 -
0.6 -
0.4 -

0.2 4

00 - r °r 1

0.00 0.25 0.50 0.75 1.00

2.5. Interpolation (scipy.interpolate)

59

SciPy Reference Guide, Release 1.8.0

2.5.3 Spline interpolation
Spline interpolation in 1-D: Procedural (interpolate.spIXXX)

Spline interpolation requires two essential steps: (1) a spline representation of the curve is computed, and (2) the spline is
evaluated at the desired points. In order to find the spline representation, there are two different ways to represent a curve
and obtain (smoothing) spline coefficients: directly and parametrically. The direct method finds the spline representation
of a curve in a 2-D plane using the function splrep. The first two arguments are the only ones required, and these
provide the = and y components of the curve. The normal output is a 3-tuple, (¢, ¢, k) , containing the knot-points, ¢ ,
the coeflicients ¢ and the order & of the spline. The default spline order is cubic, but this can be changed with the input
keyword, k.

For curves in N-D space the function sp1prep allows defining the curve parametrically. For this function only 1 input
argument is required. This input is a list of /V-arrays representing the curve in N-D space. The length of each array is the
number of curve points, and each array provides one component of the N-D data point. The parameter variable is given
with the keyword argument, u,, which defaults to an equally-spaced monotonic sequence between 0 and 1 . The default
output consists of two objects: a 3-tuple, (¢, ¢, k) , containing the spline representation and the parameter variable .

The keyword argument, s , is used to specify the amount of smoothing to perform during the spline fit. The default value
of sis s = m — v/2m where m is the number of data-points being fit. Therefore, if no smoothing is desired a value
of s = 0 should be passed to the routines.

Once the spline representation of the data has been determined, functions are available for evaluating the spline (splev)
and its derivatives (splev, spalde) at any point and the integral of the spline between any two points (splint). In
addition, for cubic splines (£ = 3) with 8 or more knots, the roots of the spline can be estimated (sproot). These
functions are demonstrated in the example that follows.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

Cubic-spline

>>> x = np.arange (0, 2*np.pi+tnp.pi/4, 2*np.pi/8)

>>> y = np.sin(x)

>>> tck = interpolate.splrep(x, vy, s=0)

>>> xnew = np.arange (0, 2*np.pi, np.pi/50)

>>> ynew = interpolate.splev(xnew, tck, der=0)

>>> plt.figure()

>>> plt.plot(x, vy, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b'")
>>> plt.legend(['Linear', 'Cubic Spline', 'True'l])

>>> plt.axis([-0.05, 6.33, -1.05, 1.051])

>>> plt.title('Cubic-spline interpolation')

>>> plt.show ()

Derivative of spline

>>> yder = interpolate.splev(xnew, tck, der=1)

>>> plt.figure()

>>> plt.plot (xnew, yder, xnew, np.cos(xnew),'——")

>>> plt.legend(['Cubic Spline', 'True'l])

>>> plt.axis([-0.05, 6.33, -1.05, 1.051])

>>> plt.title('Derivative estimation from spline')

>>> plt.show ()

60 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Cubic-spline interpolation

1.0
X Linear
Cubic Spline
0.5 —— True
0.0 A
—0.5 A
_10 B T T T T T T
0 1 2 3 4 5 6
Derivative estimation from spline
1.0 =~ A~
—— Cubic Spline
True
0.5 A .
00 N \‘ '/
\ /
—0.5 + “\ /
\ /
\‘ /
\~ /'
_10 B T T T — T T T
0 1 2 3 4 5 6

2.5.

Interpolation (scipy.interpolate)

SciPy Reference Guide, Release 1.8.0

All derivatives of spline

>>> yders = interpolate.spalde (xnew, tck)

>>> plt.figure ()

>>> for i in range(len(yders[0])):

Ca plt.plot (xnew, [d[i] for d in yders], '—-',
>>> plt.legend()

>>> plt.axis([-0.05, 6.33, -1.05, 1.051])

>>> plt.title('All derivatives of a B-spline')

>>> plt.show ()

label=f"{i} derivative")

All derivatives of a B-spline

10 1 PTG e ——— 7 N\
// N -‘l /, \\
/ 4 s N
/ I\ /1 N
0.5 1 / I | \\ // 1 N
,/ : \\ // === 0 derivative
0.0 /l] \Y/ 1 derivative
' : ,/ Nt 2 derivative -
l / —— . .
\\ | // \\ 3 derivative
—_] —— [RE—— | S————— [A
0.5 ~Z / \\ 7
A Y V4 ¥ /
A 7’ \ /
\\ // \\ //
_10 _I T S 7 T T T s--’l T
0 1 2 3 4 5 6
Integral of spline
>>> def integ(x, tck, constant=-1):
x = np.atleast_1d(x)
out = np.zeros(x.shape, dtype=x.dtype)
for n in range(len(out)):
out [n] = interpolate.splint (0, x[n], tck)

out += constant

return out

>>> yint = integ(xnew, tck)

>>> plt.figure()

>>> plt.plot (xnew, yint, xnew, -np.cos(xnew), '—-'")
>>> plt.legend(['Cubic Spline', 'True'l])

>>> plt.axis([-0.05, 6.33, -1.05, 1.05])

>>> plt.title('Integral estimation from spline')
>>> plt.show ()

Roots of spline

>>> interpolate.sproot (tck)
array ([3.1416])

Notice that sproot failed to find an obvious solution at the edge of the approximation interval, x = 0. If we define the

62

Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Integral estimation from spline

1.0 1 P
‘/ L
05 T ,/' ‘\\
/ ‘\\
/l/ ‘\
0.0 / \
/' \“
—0.5 1
—— Cubic Spline
True
_10 _'I T T T T T T
0 1 2 3 4 5 6

spline on a slightly larger interval, we recover both roots z = 0 and x = 27:

>>> x = np.linspace(-np.pi/4, 2.*np.pi + np.pi/4, 21)
>>> y = np.sin(x)

>>> tck = interpolate.splrep(x, vy, s=0)

>>> interpolate.sproot (tck)

array ([0., 3.1416])

Parametric spline

>>> t = np.arange(0, 1.1, .1)

>>> x = np.sin(2*np.pi*t)

>>> y = np.cos(2*np.pi*t)

>>> tck, u = interpolate.splprep([x, v], s=0)
>>> unew = np.arange(0, 1.01, 0.01)

>>> out = interpolate.splev (unew, tck)

>>> plt.figure ()

>>> plt.plot(x, vy, 'x', out[0], out[l], np.sin(2*np.pi*unew), np.cos(2*np.
~pi*unew), x, y, 'b")

>>> plt.legend(['Linear', 'Cubic Spline', 'True'l])

>>> plt.axis([-1.05, 1.05, -1.05, 1.051)

>>> plt.title('Spline of parametrically-defined curve')

>>> plt.show ()

2.5. Interpolation (scipy.interpolate) 63

SciPy Reference Guide, Release 1.8.0

Spline of parametrically-defined curve

1.0 A
0.5 A
X Linear
0.0 - Cubic Spline
— True
—0.5 A
—1.0 -

-1.0 -0.5 0.0 0.5 1.0

Spline interpolation in 1-d: Object-oriented (UnivariateSpline)

The spline-fitting capabilities described above are also available via an objected-oriented interface. The 1-D splines are
objects of the UnivariateSpline class, and are created with the x and y components of the curve provided as
arguments to the constructor. The class defines ___call__, allowing the object to be called with the x-axis values, at
which the spline should be evaluated, returning the interpolated y-values. This is shown in the example below for the
subclass TnterpolatedUnivariateSpline. The integral, derivatives, and root s methods are also
available on UnivariateSpline objects, allowing definite integrals, derivatives, and roots to be computed for the
spline.

The UnivariateSpline class can also be used to smooth data by providing a non-zero value of the smoothing parameter
s, with the same meaning as the s keyword of the splrep function described above. This results in a spline that has
fewer knots than the number of data points, and hence is no longer strictly an interpolating spline, but rather a smoothing
spline. If this is not desired, the TnterpolatedUnivariateSpline class is available. It is a subclass of Uni—
variateSpline that always passes through all points (equivalent to forcing the smoothing parameter to 0). This class
is demonstrated in the example below.

The LSQUnivariateSpline class is the other subclass of UnivariateSpline. It allows the user to specify the
number and location of internal knots explicitly with the parameter 7. This allows for the creation of customized splines
with non-linear spacing, to interpolate in some domains and smooth in others, or change the character of the spline.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate

InterpolatedUnivariateSpline

>>> X

np.arange (0, 2*np.pit+np.pi/4, 2*np.pi/8)
np.sin (x)

>>> s = interpolate.InterpolatedUnivariateSpline (x, V)
>>> xnew = np.arange (0, 2*np.pi, np.pi/50)

>>> ynew = s (xnew)

>>> vy

>>> plt.figure ()
>>> plt.plot(x, vy, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b'")

(continues on next page)

64 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> plt.legend(['Linear', 'InterpolatedUnivariateSpline', 'True'l])
>>> plt.axis([-0.05, 6.33, -1.05, 1.05])

>>> plt.title('InterpolatedUnivariateSpline')

>>> plt.show ()

InterpolatedUnivariateSpline

1.0
0.5 4
X Linear
0.0 A InterpolatedUnivariateSpline
—— True
—0.5 A
_10 R T T T
0 1 2 3

LSQUnivarateSpline with non-uniform knots

>>> t = [np.pi/2-.1, np.pi/2+.1, 3*np.pi/2-.1, 3*np.pi/2+.1]
>>> s interpolate.LSQUnivariateSpline(x, vy, t, k=2)
>>> ynew = S (xXnew)

>>> plt.figure()

>>> plt.plot(x, vy, 'x', xnew, ynew, xnew, np.sin(xnew), x, y, 'b'")
>>> plt.legend(['Linear', 'LSQUnivariateSpline', 'True'])

>>> plt.axis([-0.05, 6.33, -1.05, 1.05])

>>> plt.title('Spline with Specified Interior Knots')

>>> plt.show ()

2-D spline representation: Procedural (bisplrep)

For (smooth) spline-fitting to a 2-D surface, the function bisplrep is available. This function takes as required inputs
the 1-D arrays x, y, and z, which represent points on the surface z = f (x, y) . The default output is a list [tz, ty, ¢, kx, ky]
whose entries represent respectively, the components of the knot positions, the coefficients of the spline, and the order
of the spline in each coordinate. It is convenient to hold this list in a single object, fck, so that it can be passed easily to
the function bisplev. The keyword, s, can be used to change the amount of smoothing performed on the data while
determining the appropriate spline. The default value is s = m — v/2m, where m is the number of data points in the x,
y, and z vectors. As a result, if no smoothing is desired, then s = 0 should be passed to bisplrep.

To evaluate the 2-D spline and its partial derivatives (up to the order of the spline), the function bisplev is required.
This function takes as the first two arguments two 1-D arrays whose cross-product specifies the domain over which to
evaluate the spline. The third argument is the 7ck list returned from b1 splrep. If desired, the fourth and fifth arguments
provide the orders of the partial derivative in the x and y direction, respectively.

2.5. Interpolation (scipy.interpolate) 65

SciPy Reference Guide, Release 1.8.0

Spline with Specified Interior Knots

1.0 1
X Linear
LSQUnivariateSpline
0.5 1 —— True

0.0
—0.5 1

_10 _I T T T T T T

0 1 2 3 4 5 6

It is important to note that 2-D interpolation should not be used to find the spline representation of images. The algorithm
used is not amenable to large numbers of input points. The signal-processing toolbox contains more appropriate algorithms
for finding the spline representation of an image. The 2-D interpolation commands are intended for use when interpolating
a 2-D function as shown in the example that follows. This example uses the mgrid command in NumPy which is useful
for defining a “mesh-grid” in many dimensions. (See also the ogrid command if the full-mesh is not needed). The
number of output arguments and the number of dimensions of each argument is determined by the number of indexing
objects passed in mgrid.

>>> import numpy as np
>>> from scipy import interpolate
>>> import matplotlib.pyplot as plt

Define function over a sparse 20x20 grid

>>> x_edges, y_edges = np.mgrid[-1:1:2173, —-1:1:217]
>>> x = x_edges[:-1, :-1] + np.diff(x_edges[:2, 0])[0]
>>> vy y_edges[:-1, :-1] + np.diff(y_edges([0, :2])[0]
>>> z = (xty) * np.exp(-6.0* (x*x+y*y))

/ 2.
/ 2.

>>> plt.figure ()

>>> lims = dict (cmap='RdBu_r', vmin=-0.25, vmax=0.25)

>>> plt.pcolormesh (x_edges, y_edges, z, shading='flat', **lims)
>>> plt.colorbar ()

>>> plt.title("Sparsely sampled function.")

>>> plt.show()

Interpolate function over a new 70x70 grid

>>> xnew_edges, ynew_edges = np.mgrid[-1:1:713, —-1:1:7173]

>>> Xnew xnew_edges|[:-1, :-1] + np.diff (xnew_edges[:2, 0])[0]
>>> ynew = ynew_edges|[:-1, :-1] + np.diff(ynew_edges[0, :2])[0]
>>> tck = interpolate.bisplrep(x, y, z, s=0)

>>> znew = interpolate.bisplev(xnew[:,0], ynew([O0,:], tck)

66 Chapter 2. SciPy User Guide

https://numpy.org/devdocs/reference/generated/numpy.mgrid.html#numpy.mgrid
https://numpy.org/devdocs/reference/generated/numpy.ogrid.html#numpy.ogrid
https://numpy.org/devdocs/reference/generated/numpy.mgrid.html#numpy.mgrid

SciPy Reference Guide, Release 1.8.0

Sparsely sampled function.

1.0
0.2
0.5 4
0.1
0.0 A 0.0
-0.1
—0.5 A
-0.2
_1.0 T T T
-1.0 -0.5 0.0 0.5 1.0
>>> plt.figure()
>>> plt.pcolormesh (xnew_edges, ynew_edges, znew, shading='flat', **1lims)
>>> plt.colorbar()
>>> plt.title("Interpolated function.")
>>> plt.show ()
Interpolated function.
1.0
0.2
0.5 4
0.1
0.0 4 0.0
-0.1
—0.5 A
-0.2
_1.0 T T T
-1.0 -0.5 0.0 0.5 1.0

2.5. Interpolation (scipy.interpolate) 67

SciPy Reference Guide, Release 1.8.0

2-D spline representation: Object-oriented (RivariateSpline)

The BivariateSpline class is the 2-D analog of the UnivariateSpline class. It and its subclasses implement
the FITPACK functions described above in an object-oriented fashion, allowing objects to be instantiated that can be
called to compute the spline value by passing in the two coordinates as the two arguments.

2.5.4 Using radial basis functions for smoothing/interpolation

Radial basis functions can be used for smoothing/interpolating scattered data in N dimensions, but should be used with
caution for extrapolation outside of the observed data range.

1-D Example

This example compares the usage of the Rbf and UnivariateSpline classes from the scipy.interpolate module.

>>> import numpy as np
>>> from scipy.interpolate import Rbf, InterpolatedUnivariateSpline
>>> import matplotlib.pyplot as plt

>>> # setup data

>>> x = np.linspace (0, 10, 9)
>>> y = np.sin(x)

>>> xi = np.linspace (0, 10, 101)

>>> # use fitpack2 method
>>> jus = InterpolatedUnivariateSpline(x, Vy)
>>> yi = ius(xi)

>>> plt.subplot (2, 1, 1)

>>> plt.plot(x, y, 'bo'")

>>> plt.plot(xi, vyi, 'g'")

>>> plt.plot (xi, np.sin(xi), 'r'")

>>> plt.title('Interpolation using univariate spline')

>>> # use RBF method
>>> rbf = Rbf(x, vy)
>>> fi = rbf(xi)

>>> plt.subplot (2, 1, 2)

>>> plt.plot(x, y, 'bo'")

>>> plt.plot(xi, fi, 'g'")

>>> plt.plot(xi, np.sin(xi), 'r'")

>>> plt.title('Interpolation using RBF - multiquadrics')
>>> plt.show()

68 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Interpolation using univariate spline

L
Inter;d?olatlon uglng BFR multhug\drlcs

10
1_
0_
—1- T T T T T T
0 2 4 6 8 10

2-D Example

This example shows how to interpolate scattered 2-D data:

>>>
>>>
>>>
>>>

import numpy as np

from scipy.interpolate import Rbf
import matplotlib.pyplot as plt
from matplotlib import cm

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

2-d tests - setup scattered data

rng = np.random.default_rng()

x = rng.random(100)*4.0-2.0

y = rng.random(100)*4.0-2.0

zZ = X*np.exp (—x**2-y**2)

edges = np.linspace(-2.0, 2.0, 101)

centers = edges[:-1] + np.diff(edges[:2])[0] / 2.
XI, YI = np.meshgrid(centers, centers)

>>>
>>>
>>>

use RBF
rbf = Rbf(x, y, z, epsilon=2)
Z2I = rbf (XI, YI)

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

plot the result

plt.subplot (1, 1, 1)

X_edges, Y_edges = np.meshgrid(edges, edges)

lims = dict(cmap='RdBu_r', vmin=-0.4, vmax=0.4)
plt.pcolormesh (X_edges, Y_edges, ZI, shading='flat', **lims)
plt.scatter(x, y, 100, z, edgecolor='w', 1lw=0.1, **lims)
plt.title ('RBF interpolation - multigquadrics')

plt.xlim (-2, 2)

plt.ylim(-2, 2)

plt.colorbar ()

2.5. Interpolation (scipy.interpolate)

69

SciPy Reference Guide, Release 1.8.0

RBF interpolation - multiquadrics

2 0.4

14 0.2

0- 0.0
1 -er : ; ~0.2
-2 . . T -0.4

2.6 Fourier Transforms (scipy. ££t)

Contents

» Fourier Transforms (scipy.fft)
— Fast Fourier transforms
« 1-D discrete Fourier transforms
« 2- and N-D discrete Fourier transforms
— Discrete Cosine Transforms
+ Type I DCT
Type 1 DCT
Type Ill DCT
Type 1V DCT
DCT and IDCT

*

*

*

x Example
— Discrete Sine Transforms
+ Type I DST
+ Type Il DST
« Type Il DST
« Type IV DST
» DST and IDST

— Fast Hankel Transform

— References

70 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Fourier analysis is a method for expressing a function as a sum of periodic components, and for recovering the signal
from those components. When both the function and its Fourier transform are replaced with discretized counterparts, it
is called the discrete Fourier transform (DFT). The DFT has become a mainstay of numerical computing in part because
of a very fast algorithm for computing it, called the Fast Fourier Transform (FFT), which was known to Gauss (1805)
and was brought to light in its current form by Cooley and Tukey [CT65]. Press et al. [NRO7] provide an accessible
introduction to Fourier analysis and its applications.

2.6.1 Fast Fourier transforms
1-D discrete Fourier transforms

The FFT y[k] of length IV of the length-/N sequence x/n] is defined as

k
E e =2 JGLx

and the inverse transform is defined as follows

| V-1
rjkn
=N E TN y k]
k=0

These transforms can be calculated by means of £t and i fft, respectively, as shown in the following example.

>>> from scipy.fft import fft, ifft

>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])

>>> y = fft(x)

>>> Y

array ([4.5 +0.3 , 2.08155948-1.6510987673,
-1.83155948+1.608220413, -1.83155948-1.608220417,
2.08155948+1.65109876731)

>>> yinv = ifft (y)

>>> yinv

array([1.0+0.3, 2.0+0.3, 1.0+0.3j, -1.0+0.3j, 1.5+0.31])

From the definition of the FFT it can be seen that

2

-1

= Z x[n]

n=0

In the example

>>> np.sum(x)
4.5

which corresponds to y[0]. For N even, the elements y[1]...y[N/2 — 1] contain the positive-frequency terms, and the
elements y[N/2]...y[N — 1] contain the negative-frequency terms, in order of decreasingly negative frequency. For N
odd, the elements y[1]...y[(N — 1)/2] contain the positive-frequency terms, and the elements y[(N + 1)/2]...y[N — 1]
contain the negative-frequency terms, in order of decreasingly negative frequency.

In case the sequence x is real-valued, the values of y[n] for positive frequencies is the conjugate of the values y[n| for
negative frequencies (because the spectrum is symmetric). Typically, only the FFT corresponding to positive frequencies
is plotted.

The example plots the FFT of the sum of two sines.

2.6. Fourier Transforms (scipy. ££t) 71

SciPy Reference Guide, Release 1.8.0

>>> from scipy.fft import fft, fftfreqg
>>> # Number of sample points
>>> N = 600
>>> # sample spacing
>> T = 1.0 / 800.0
>>> x = np.linspace (0.0, N*T, N, endpoint=False)
>>> y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
>>> yf = fft (y)
>>> xf = fftfreq(N, T)I[:N//2]
>>> import matplotlib.pyplot as plt
>>> plt.plot(xf, 2.0/N * np.abs(yf[0:N//2]))
>>> plt.grid()
>>> plt.show ()
0.6
0.4 -
0.2 4
0.0 4
T T T T T
0 100 200 300 400

The FFT input signal is inherently truncated. This truncation can be modeled as multiplication of an infinite signal with a
rectangular window function. In the spectral domain this multiplication becomes convolution of the signal spectrum with

the window function spectrum, being of form sin(z)/

x. This convolution is the cause of an effect called spectral leakage

(see [WPW]). Windowing the signal with a dedicated window function helps mitigate spectral leakage. The example

below uses a Blackman window from scipy.signal and
been truncated for illustrative purposes).

shows the effect of windowing (the zero component of the FFT has

>>> from scipy.fft import fft, fftfreq
>>> # Number of sample points
>>> N = 600
>>> # sample spacing
>> T = 1.0 / 800.0
>>> x = np.linspace (0.0, N*T, N, endpoint=False)
>>> y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
>>> yf = fft (y)
>>> from scipy.signal import blackman
>>> w = blackman (N)
>>> ywf = fft (y*w)
>>> xf = fftfreq(N, T)I[:N//2]
(continues on next page)
72 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> import matplotlib.pyplot as plt

>>> plt.semilogy (xf[1:N//2], 2.0/N * np.abs(yf[1:N//21), '-b')
>>> plt.semilogy (xf[1:N//2], 2.0/N * np.abs(ywf[1:N//2]), '—-r')
>>> plt.legend(['FFT', 'FFT w. window'])

>>> plt.grid()

>>> plt.show ()

1o-1- — FFT
—— FFT w. window

10—3 i

10—5 i

10—7 .

0 100 200 300 400

In case the sequence x is complex-valued, the spectrum is no longer symmetric. To simplify working with the FFT
functions, scipy provides the following two helper functions.

The function £t freq returns the FFT sample frequency points.

>>> from scipy.fft import fftfreqg

>>> freq = fftfreg(8, 0.125)

>>> freqg

array([0., 1., 2., 3., 4., -3., -2., -1.1)

In a similar spirit, the function £t shift allows swapping the lower and upper halves of a vector, so that it becomes
suitable for display.

>>> from scipy.fft import fftshift
>>> x = np.arange(8)

>>> fftshift (x)

array([4, 5, 6, 7, 0, 1, 2, 31])

The example below plots the FFT of two complex exponentials; note the asymmetric spectrum.

>>> from scipy.fft import fft, fftfreq, fftshift
>>> # number of signal points

>>> N = 400

>>> # sample spacing

>> T = 1.0 / 800.0

>>> x = np.linspace (0.0, N*T, N, endpoint=False)

>>> y = np.exp(50.0 * 1.3 * 2.0*np.pi*x) + 0.5*np.exp(-80.0 * 1.3 * 2.0*np.
—P1l*X) (continues on next page)

2.6. Fourier Transforms (scipy. ££t) 73

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> yf = fft(y)

>>> xf fftfreqg(N, T)

>>> xf = fftshift (xf)

>>> yplot = fftshift (yf)

>>> import matplotlib.pyplot as plt
>>> plt.plot(xf, 1.0/N * np.abs(yplot))
>>> plt.grid()

>>> plt.show ()

1.0 A

0.8 A

0.6 1

0.4

0.2 4

0.0 A1
—-400 —200 0 200 400

The function rfft calculates the FFT of a real sequence and outputs the complex FFT coefficients y[n] for only half of
the frequency range. The remaining negative frequency components are implied by the Hermitian symmetry of the FFT
for a real input (y [n] = conj (y[-n])). In case of N being even: [Re(y[0]) + 07, y[1], ..., Re(y[N/2]) + 07]; in
case of N being odd [Re(y[0]) + 07,y[1], ..., y[IN/2]. The terms shown explicitly as Re(y|k]) + 0j are restricted to be
purely real since, by the hermitian property, they are their own complex conjugate.

The corresponding function i r £t calculates the IFFT of the FFT coefficients with this special ordering.

>>> from scipy.fft import fft, rfft, irfft
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5, 1.01])

>>> fft (x)

array ([5.5 +0.7 , 2.25-0.43301273 , -2.75-1.299038117,
1.5 +0.7 , —2.75+1.299038113, 2.25+0.433012773 1)

>>> yr = rfft (x)

>>> yr

array ([5.5 +0.7 , 2.25-0.43301273 , -2.75-1.299038117,
1.5 +0.7 1)

>>> irfft (yr)

array ([1. , 2. , 1., =-1. , 1.5, 1.]

>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])

>>> fft (x)

array ([4.5 +0.7 , 2.08155948-1.651098767,
-1.83155948+1.608220415, -1.83155948-1.608220417,
2.08155948+1.6510987671)

(continues on next page)

74 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> yr = rfft (x)
>>> yr
array ([4.5 +0.7 , 2.08155948-1.651098767,

-1.83155948+1.6082204131])

Notice that the £t of odd and even length signals are of the same shape. By default, i £ 7t assumes the output signal
should be of even length. And so, for odd signals, it will give the wrong result:

>>> irfft (yr)
array ([1.70788987, 2.40843925, -0.37366961, 0.757340491])

To recover the original odd-length signal, we must pass the output shape by the n parameter.

>>> irfft(yr, n=len(x))
array ([1. , 2., 1., -1., 1.51)

2- and N-D discrete Fourier transforms
The functions ££t2 and i ££t2 provide 2-D FFT and IFFT, respectively. Similarly, ££tn and i fftn provide N-D
FFT, and IFFT, respectively.

For real-input signals, similarly to r £ 7t, we have the functions r£7t2 and i rfft2 for 2-D real transforms; rfftn
and i rfftnfor N-D real transforms.

The example below demonstrates a 2-D IFFT and plots the resulting (2-D) time-domain signals.

>>> from scipy.fft import ifftn

>>> import matplotlib.pyplot as plt
>>> import matplotlib.cm as cm

>>> N = 30

>>> f, ((axl, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots (2, 3, sharex='col',.
—sharey="row'")

>>> xf = np.zeros ((N,N))

>>> xf[0, 5] =1

>>> xf[0, N-5] =1

>>> 7 = ifftn(xf)

>>> axl.imshow (xf, cmap=cm.Reds)
>>> ax4.imshow (np.real (Z), cmap=cm.gray)

>>> xf = np.zeros ((N, N))
>>> xf[5, 0] =1

>>> xf[N-5, 0] =1

>>> 7 = ifftn(xf)

>>> ax2.imshow (xf, cmap=cm.Reds)
>>> ax5.imshow (np.real (Z), cmap=cm.gray)

>>> xf = np.zeros ((N, N))
>>> xf[5, 10] = 1

>>> xf[N-5, N-10] = 1
>>> 7 = ifftn(xf)

>>> ax3.imshow (xf, cmap=cm.Reds)
>>> ax6.imshow (np.real(Z), cmap=cm.gray)
>>> plt.show ()

2.6. Fourier Transforms (scipy. ££t) 75

SciPy Reference Guide, Release 1.8.0

0_ r r - -
10 - - -
20 - - -
0_

ll'
20 - -

T T Iﬁ
0 20 0 20 0 20

2.6.2 Discrete Cosine Transforms

SciPy provides a DCT with the function dct and a corresponding IDCT with the function i dct. There are 8 types of the
DCT [WPC], [Mak]; however, only the first 4 types are implemented in scipy. “The” DCT generally refers to DCT type
2, and “the” Inverse DCT generally refers to DCT type 3. In addition, the DCT coefficients can be normalized differently
(for most types, scipy provides None and ortho). Two parameters of the dct/idct function calls allow setting the DCT
type and coeflicient normalization.

For a single dimension array x, dct(x, norm="ortho’) is equal to MATLAB dct(x).

Type | DCT

SciPy uses the following definition of the unnormalized DCT-I (norm=None):

N—2
mnk
y[k]a:0+(1)kxN_1+22x[n]cos(N_1), 0<k<N.

n=1

Note that the DCT-I is only supported for input size > 1.

Type Il DCT

SciPy uses the following definition of the unnormalized DCT-II (norm=None):

N1
y[k]zQZm[n]cos (W) 0<k<N.
n=0

In case of the normalized DCT (norm="ortho"), the DCT coefficients y[k] are multiplied by a scaling factor f:

~ JV1/(4N), ifk=0
f= V1/(2N), otherwise -

In this case, the DCT “base functions” ¢y [n] = 2f cos (W) become orthonormal:

z_: Pr[nldu[n] = k.

76 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Type Il DCT

SciPy uses the following definition of the unnormalized DCT-III (norm=None):

N-1

™2k + 1)

k| = 2 _ <k<N

ylk] = zo + 3:1 x[n] cos(5N > 0<k<N,
or, for norm="ortho"':
N-1
Zo 2 ™ (2k + 1)
k] — _Z R S —a 0<k<N.
vk =5 TN 2 zln] COS(N =

Type IV DCT

SciPy uses the following definition of the unnormalized DCT-IV (norm=None):

N-1
y[k] :2Zx[n]cos (71'(2714—2\;2/4:—&—1)) 0<k<N,
n=0

or, for norm="ortho"':

2 “ <W(2n+1)(2k+1)

< N
DED) g

DCT and IDCT

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor of 2N. The orthonormalized
DCT-III is exactly the inverse of the orthonormalized DCT- II. The function idct performs the mappings between the
DCT and IDCT types, as well as the correct normalization.

The following example shows the relation between DCT and IDCT for different types and normalizations.

>>> from scipy.fft import dct, idct
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])

The DCT-II and DCT-III are each other’s inverses, so for an orthonormal transform we return back to the original signal.

>>> dct (dct (x, type=2, norm='ortho')

, type=3, norm='ortho')
array ([1. , 2. , 1., -1. , 1.51)

Doing the same under default normalization, however, we pick up an extra scaling factor of 2N = 10 since the forward
transform is unnormalized.

>>> dct (dct (x, type=2), type=3)
array ([10., 20., 10., -10., 15.17)

For this reason, we should use the function i dct using the same type for both, giving a correctly normalized result.

>>> # Normalized inverse: no scaling factor
>>> idct (dct (x, type=2), type=2)
array ([1. , 2. , 1., -1. , 1.51)

Analogous results can be seen for the DCT-I, which is its own inverse up to a factor of 2(IN — 1).

2.6. Fourier Transforms (scipy. ££t) 77

SciPy Reference Guide, Release 1.8.0

>>> dct (dct (x, type=1, norm='ortho'), type=1, norm='ortho')

array ([1. , 2., 1., =-1., 1.51)

>>> # Unnormalized round-trip via DCT-I: scaling factor 2*(N-1) = 8
>>> dct (dct (x, type=1l), type=1)

array ([8. , 16., 8. , —-8. , 12.1)

>>> # Normalized inverse: no scaling factor

>>> idct (dct (x, type=1l), type=1)

array ([1. , 2. 1., =-1. , 1.571)

And for the DCT-IV, which is also its own inverse up to a factor of 2N.

>>> dct (dct (x, type=4, norm='ortho'), type=4, norm='ortho')
array ([1. , 2. , 1., -1. , 1.51)

>>> # Unnormalized round-trip via DCT-IV: scaling factor 2*N = 10
>>> dct (dct (x, type=4), type=4)

array ([10., 20., 10., -10., 15.1)

>>> # Normalized inverse: no scaling factor

>>> idct (dct (x, type=4), type=4)

array ([1. , 2. , 1., -1. , 1.51)

Example

The DCT exhibits the “energy compaction property”, meaning that for many signals only the first few DCT coefficients
have significant magnitude. Zeroing out the other coeflicients leads to a small reconstruction error, a fact which is exploited
in lossy signal compression (e.g. JPEG compression).

The example below shows a signal x and two reconstructions (x2¢ and x15) from the signal’s DCT coefficients. The signal
Toq 1 reconstructed from the first 20 DCT coefficients, x5 is reconstructed from the first 15 DCT coefficients. It can be
seen that the relative error of using 20 coefficients is still very small (~0.1%), but provides a five-fold compression rate.

>>> from scipy.fft import dct, idct
>>> import matplotlib.pyplot as plt
>>> N = 100

>>> t = np.linspace(0,20,N, endpoint=False)
>>> x = np.exp(-t/3)*np.cos(2*t)

>>> y = dct(x, norm='ortho')

>>> window = np.zeros (N)

>>> window[:20] = 1

>>> yr = idct (y*window, norm='ortho')
>>> sum(abs (x-yr)**2) / sum(abs (x)**2)
0.0009872817275276098

>>> plt.plot (t, x, '-bx'")

>>> plt.plot(t, yr, 'ro')

>>> window = np.zeros (N)
>>> window[:15] = 1
>>> yr = idct (y*window, norm='ortho')

>>> sum(abs (x-yr)**2) / sum(abs (x)**2)
0.06196643004256714

>>> plt.plot(t, yr, 'gt')

>>> plt.legend(['x', 'S$x_{20}S', '"Sx_{15}$'])
>>> plt.grid()

>>> plt.show ()

78 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

1.0 A N
® Xy
0.5 - toXs
0.0 +
—0.5 +
0 5 10 15 20

2.6.3 Discrete Sine Transforms

SciPy provides a DST [Mak] with the function dst and a corresponding IDST with the function idst.

There are, theoretically, 8 types of the DST for different combinations of even/odd boundary conditions and boundary
offsets [WPS], only the first 4 types are implemented in scipy.

Type | DST
DST-I assumes the input is odd around n=-1 and n=N. SciPy uses the following definition of the unnormalized DST-I

(norm=None):

e G (F D+ 1)
N+1

), 0<k<N.

Note also that the DST-I is only supported for input size > 1. The (unnormalized) DST-I is its own inverse, up to a factor
of 2(N+1).

Type Il DST

DST-II assumes the input is odd around n=-1/2 and even around n=N. SciPy uses the following definition of the unnor-
malized DST-II (norm=None):

N—-1
ylk] =2) w[n]sin (W(TH lﬁ)(]” D) . 0<k<N.
n=0

2.6. Fourier Transforms (scipy. ££t) 79

SciPy Reference Guide, Release 1.8.0

Type lll DST

DST-I assumes the input is odd around n=-1 and even around n=N-1. SciPy uses the following definition of the unnor-
malized DST-III (norm=None):

N-2
(a4 Dk +1/2)
k] = (—1)*z[N —1] +2 x|n|sin , 0<k<N.
VI = (0l 1) 2 37 el sin (TR <

Type IV DST

SciPy uses the following definition of the unnormalized DST-IV (norm=None):

N-1
y[k‘]ZQZx[n]sin (7r(2n+ij)\§2k+1)> 0<k<N,
n=0

or, for norm="ortho"':

N—1
ylk] = \/z Z‘B 2[n] sin (”(2” +ij)\§2k i 1)) 0<k<N,

DST and IDST

The following example shows the relation between DST and IDST for different types and normalizations.

>>> from scipy.fft import dst, idst
>>> x = np.array([1.0, 2.0, 1.0, -1.0, 1.51])

The DST-II and DST-III are each other’s inverses, so for an orthonormal transform we return back to the original signal.

>>> dst (dst (x, type=2, norm='ortho')

, type=3, norm='ortho')
array ([1. , 2., 1., -1., 1.57)

Doing the same under default normalization, however, we pick up an extra scaling factor of 2N = 10 since the forward
transform is unnormalized.

>>> dst (dst (x, type=2), type=3)
array ([10., 20., 10., -10., 15.1)

For this reason, we should use the function i dst using the same type for both, giving a correctly normalized result.

>>> idst (dst (x, type=2), type=2)
array ([1. , 2., 1., -1., 1.51)

Analogous results can be seen for the DST-I, which is its own inverse up to a factor of 2(N — 1).

>>> dst (dst (x, type=1, norm='ortho'),
array ([1. , 2., 1., -1., 1.5])
>>> # scaling factor 2*(N+1) = 12
>>> dst (dst (x, type=1), type=1)
array ([12., 24., 12., -12., 18.])
>>> # no scaling factor

>>> idst (dst (x, type=1l), type=1)
array ([1. , 2., 1., -1. , 1.51)

type=1, norm='ortho')

80 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

And for the DST-IV, which is also its own inverse up to a factor of 2N.

>>> dst (dst (x, type=4, norm='ortho'),
array ([1. , 2., 1., —-1., 1.57)
>>> # scaling factor 2*N = 10

>>> dst (dst (x, type=4), type=4)
array ([10., 20., 10., -10., 15.])
>>> # no scaling factor

>>> idst (dst (x, type=4), type=4)
array ([1. , 2., 1., =-1. , 1.57)

type=4, norm='ortho')

2.6.4 Fast Hankel Transform
SciPy provides the functions fht and ifht to perform the Fast Hankel Transform (FHT) and its inverse (IFHT) on
logarithmically-spaced input arrays.

The FHT is the discretised version of the continuous Hankel transform defined by [Ham00]
Ak) = / " o) Ju(kr) kdr |
0
with J,, the Bessel function of order y. Under a change of variables r — logr, k — log k, this becomes
A(elosk) = /Ooa(elogr) Ju(elog ktlogr) glogk+logT glo0 -
0

which is a convolution in logarithmic space. The FHT algorithm uses the FFT to perform this convolution on discrete
input data.

Care must be taken to minimise numerical ringing due to the circular nature of FFT convolution. To ensure that the low-
ringing condition [HamOO] holds, the output array can be slightly shifted by an offset computed using the fhtoffset
function.

2.6.5 References

2.7 Signal Processing (scipy.signal)

The signal processing toolbox currently contains some filtering functions, a limited set of filter design tools, and a few
B-spline interpolation algorithms for 1- and 2-D data. While the B-spline algorithms could technically be placed under
the interpolation category, they are included here because they only work with equally-spaced data and make heavy use
of filter-theory and transfer-function formalism to provide a fast B-spline transform. To understand this section, you will
need to understand that a signal in SciPy is an array of real or complex numbers.

2.7.1 B-splines

A B-spline is an approximation of a continuous function over a finite- domain in terms of B-spline coefficients and knot
points. If the knot- points are equally spaced with spacing Az, then the B-spline approximation to a 1-D function is the
finite-basis expansion.

y(z) ch]ﬂo (Aix_j)'

2.7. Signal Processing (scipy.signal) 81

SciPy Reference Guide, Release 1.8.0

In two dimensions with knot-spacing Az and Ay, the function representation is
~ g (N pe (L
2(0) =33 s (= -i)e (Ay k) .

In these expressions, 3° (-) is the space-limited B-spline basis function of order o. The requirement of equally-spaced
knot-points and equally-spaced data points, allows the development of fast (inverse-filtering) algorithms for determining
the coeflicients, ¢;, from sample-values, ,,. Unlike the general spline interpolation algorithms, these algorithms can
quickly find the spline coefficients for large images.

The advantage of representing a set of samples via B-spline basis functions is that continuous-domain operators (deriva-
tives, re- sampling, integral, etc.), which assume that the data samples are drawn from an underlying continuous function,
can be computed with relative ease from the spline coefficients. For example, the second derivative of a spline is

y”(w)z Alxz;cjﬂo// (é_])

Using the property of B-splines that

2 po
PO _ o2 1) 2872 () + 8 (w— 1),

it can be seen that
1 T T T
1" o—2 . o—2 . 0o—2 -
V@)= A Zj o o (g =) =20 (55 —0) + 0 (55—
If 0o = 3, then at the sample points:
A.’Ez y/ (x)|r:nA1 = E cjén,]qu — QCj(Sn,j —+ Cj(sn,jfl,

J
= Cn+1 — 2Cn + cp—1.

Thus, the second-derivative signal can be easily calculated from the spline fit. If desired, smoothing splines can be found
to make the second derivative less sensitive to random errors.

The savvy reader will have already noticed that the data samples are related to the knot coefficients via a convolution
operator, so that simple convolution with the sampled B-spline function recovers the original data from the spline coeffi-
cients. The output of convolutions can change depending on how the boundaries are handled (this becomes increasingly
more important as the number of dimensions in the dataset increases). The algorithms relating to B-splines in the signal-
processing subpackage assume mirror-symmetric boundary conditions. Thus, spline coefficients are computed based on
that assumption, and data-samples can be recovered exactly from the spline coefficients by assuming them to be mirror-
symmetric also.

Currently the package provides functions for determining second- and third- order cubic spline coefficients from equally-
spaced samples in one and two dimensions (gsplineld, gsplineZ2d, csplineld, cspline2d). The package
also supplies a function (bspline) for evaluating the B-spline basis function, 3° () for arbitrary order and x. For
large o, the B-spline basis function can be approximated well by a zero-mean Gaussian function with standard-deviation
equal to o, = (0 + 1) /12

or N 1 x?)
6 (@) ~ Wexp(o).
A function to compute this Gaussian for arbitrary x and o is also available (gauss_spline). The following code
and figure use spline-filtering to compute an edge-image (the second derivative of a smoothed spline) of a raccoon’s face,
which is an array returned by the command scipy.misc. face. The command sepfir2d was used to apply a
separable 2-D FIR filter with mirror-symmetric boundary conditions to the spline coefficients. This function is ideally-
suited for reconstructing samples from spline coefficients and is faster than convolveZ2d, which convolves arbitrary
2-D filters and allows for choosing mirror-symmetric boundary conditions.

82 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt

>>> image = misc.face(gray=True) .astype(np.float32)

>>> derfilt = np.array([1.0, -2, 1.0], dtype=np.float32)
>>> ck = signal.cspline2d(image, 8.0)

>>> deriv = (signal.sepfir2d(ck, derfilt, [1]) +

signal.sepfir2d(ck, [1], derfilt))

Alternatively, we could have done:

laplacian = np.array([[0,1,0], [1,-4,11, [0,1,011, dtype=np.float32)
deriv2 = signal.convolve2d(ck, laplacian,mode="same',boundary="symm')

>>> plt.figure ()

>>> plt.imshow (image)

>>> plt.gray()

>>> plt.title('Original image')
>>> plt.show ()

Original image

0 200 400 600 800 1000

>>> plt.figure ()

>>> plt.imshow (deriv)

>>> plt.gray ()

>>> plt.title ('Output of spline edge filter')
>>> plt.show ()

2.7. Signal Processing (scipy.signal) 83

SciPy Reference Guide, Release 1.8.0

Output of spline edge filter

200
400

600

0 200 400 600 800 1000

2.7.2 Filtering

Filtering is a generic name for any system that modifies an input signal in some way. In SciPy, a signal can be thought of as
a NumPy array. There are different kinds of filters for different kinds of operations. There are two broad kinds of filtering
operations: linear and non-linear. Linear filters can always be reduced to multiplication of the flattened NumPy array by
an appropriate matrix resulting in another flattened NumPy array. Of course, this is not usually the best way to compute
the filter, as the matrices and vectors involved may be huge. For example, filtering a 512 X 512 image with this method
would require multiplication of a 5122 x 5122 matrix with a 5122 vector. Just trying to store the 5122 x 5122 matrix using
a standard NumPy array would require 68, 719, 476, 736 elements. At 4 bytes per element this would require 256GB of
memory. In most applications, most of the elements of this matrix are zero and a different method for computing the
output of the filter is employed.

Convolution/Correlation

Many linear filters also have the property of shift-invariance. This means that the filtering operation is the same at different
locations in the signal and it implies that the filtering matrix can be constructed from knowledge of one row (or column)
of the matrix alone. In this case, the matrix multiplication can be accomplished using Fourier transforms.

Let z [n] define a 1-D signal indexed by the integer n. Full convolution of two 1-D signals can be expressed as

oo

yll= > wlklhin—k.

k=—oc0

This equation can only be implemented directly if we limit the sequences to finite-support sequences that can be stored in
a computer, choose n = 0 to be the starting point of both sequences, let & + 1 be that value for which « [n] = 0 for all
n > K + 1and M + 1 be that value for which h [n] = 0 for all n > M + 1, then the discrete convolution expression is

min(n,K)

y[n] = Z x[klhn—k].

k=max(n—M,0)

84 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

For convenience, assume K > M. Then, more explicitly, the output of this operation is

y [0] 2 [0] 1 [0]
y[1] = z[0r[1]+z[1] (0]
y[2] z[0]h 2] + 2 [1] A (1] + 2 [2] K [0]
y [M] 2 [0 h[M]+ 1] h[M — 1]+ +a [M]h[0]
y[M +1] w[h[M]+z[2h[M =1+ +a[M+1]h[0]
y K] 2K — Mh[M] + -+ [K]h[0]
y[K+1 = z[K+1—Mh[M+ - +2z[K]h[1]
y[K+M—1j _ .as[K—l}h[M]—i-x[K]h[M—l]
y[K+M] = «[K|h[M).

Thus, the full discrete convolution of two finite sequences of lengths K + 1 and M —+ 1, respectively, results in a finite
sequence of length K + M +1=(K+1)+ (M +1)—1.

1-D convolution is implemented in SciPy with the function convolve. This function takes as inputs the signals x, h,
and two optional flags ‘mode’ and ‘method’, and returns the signal y.

The first optional flag, ‘mode’, allows for the specification of which part of the output signal to return. The default value
of ‘full’ returns the entire signal. If the flag has a value of ‘same’, then only the middle K values are returned, starting at
Y H%H , so that the output has the same length as the first input. If the flag has a value of ‘valid’, then only the middle
K—-—M+1=(K+1)—(M+ 1)+ 1 output values are returned, where z depends on all of the values of the smallest

input from A [0] to h [M] . In other words, only the values y [M] to y [K] inclusive are returned.

The second optional flag, ‘method’, determines how the convolution is computed, either through the Fourier transform
approach with £ftconvolve or through the direct method. By default, it selects the expected faster method. The
Fourier transform method has order O(N log V), while the direct method has order O(N?). Depending on the big
O constant and the value of N, one of these two methods may be faster. The default value, ‘auto’, performs a rough
calculation and chooses the expected faster method, while the values ‘direct’ and “fft’ force computation with the other
two methods.

The code below shows a simple example for convolution of 2 sequences:

>>> x = np.array([1.0, 2.0, 3.01)

>>> h = np.array([0.0, 1.0, 0.0, 0.0, 0.0])
>>> signal.convolve (x, h)

array([0., 1., 2., 3., 0., 0., 0.]1)
>>> signal.convolve (x, h, 'same')

array ([2., 3., 0.])

This same function convolve can actually take N-D arrays as inputs and will return the N-D convolution of the two
arrays, as is shown in the code example below. The same input flags are available for that case as well.

>>> x = np.array([[1., 1., 0., 0.], [1., 1., 0., 0.1, [0O., O., O., 0.1, [0.,_
~0., 0., 0.11)
>>> h = np.array([[1l., 0., 0., 0.1, [0., O., O., 0.1, [0O., O., 1., 0.1, [0.,_

0., 0., 0.11)
>>> signal.convolve (x, h)
array ([[1., 1., 0., 0., 0., 0., 0.1,

(continues on next page)

2.7. Signal Processing (scipy.signal) 85

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

(1., 1., 0., 0., 0., 0., 0.7,
(0., 0., 1., 1., 0., 0., 0.7,
(6., 0., 1., 1., 0., 0., 0.7,
r 6., 0., 0., 0., 0., 0., 0.7,
(0., 0., 0., 0., 0., 0., 0.1,
[0. 0 0. 0 0 0. 0.11)

Correlation is very similar to convolution except that the minus sign becomes a plus sign. Thus,

oo

wln] = Y ykan+k,

k=—0oc0

is the (cross) correlation of the signals y and x. For finite-length signals with y [n] = 0 outside of the range [0, K] and
x [n] = 0 outside of the range [0, M], the summation can simplify to

min(K,M—n)
whl= Y yKehth.
k=max(0,—n)
Assuming again that K > M, this is
wl-K] = y[K]z[0]
w[-K+1] = y[K-1]z[0]+y[K]z[l]
wM—-K] = yl[K-M]z[0]+y[K-—M+1z[1]+ - +y[K]xz[M]
wM-K+1 = y[K-—M—-1]z[0]+- - +y[K—1]z[M]
wl-1] = y[z0]+y2Jz[]+ - +y[M+ 1]z [M]
wl0] = y[0]z[0]+y[1]a[l]+- - +y[M]a[M]
wll] = y0lz[l]+y[]z[2+ - +y[M - 1]z [M]
w (2] yOlz 2] +y[tz 3]+ +y[M—2]z[M]
w [M —1] y[0]a[M —1] +y 1]z [M]
wM] = yl0]z[M].

The SciPy function correlate implements this operation. Equivalent flags are available for this operation to re-
turn the full K + M + 1 length sequence (‘full’) or a sequence with the same size as the largest sequence starting at
w [—K + L%H (‘same’) or a sequence where the values depend on all the values of the smallest sequence (‘valid’).
This final option returns the K’ — M + 1 values w [M — K] to w [0] inclusive.

The function correlate can also take arbitrary N-D arrays as input and return the N-D convolution of the two arrays

on output.

When N = 2, correlate and/or convolve can be used to construct arbitrary image filters to perform actions such
as blurring, enhancing, and edge-detection for an image.

>>> import numpy as np
>>> from scipy import signal, misc
>>> import matplotlib.pyplot as plt

86 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

>>> image = misc.face (gray=True)

>>> w = np.zeros((50, 50))

>>> w[0][0] = 1.0

>>> w[49][25] 1.0

>>> image_new = signal.fftconvolve (image, w)

>>> plt.figure ()

>>> plt.imshow (image)

>>> plt.gray()

>>> plt.title('Original image')
>>> plt.show ()

>>> plt.figure()

>>> plt.imshow (image_new)

>>> plt.gray ()

>>> plt.title('Filtered image')
>>> plt.show ()

Calculating the convolution in the time domain as above is mainly used for filtering when one of the signals is much smaller
than the other (K > M), otherwise linear filtering is more efficiently calculated in the frequency domain provided by
the function Fftconvolve. By default, convolve estimates the fastest method using choose_conv._method

If the filter function w[n, m] can be factored according to
h[n,m] = hq[n]ha[m],

convolution can be calculated by means of the function sepfir2d. As an example, we consider a Gaussian filter
gaussian

which is often used for blurring.

2.7. Signal Processing (scipy.signal) 87

SciPy Reference Guide, Release 1.8.0

Filtered image

200

400

600

0 200 400 600 800 1000

>>>
>>>
>>>

import numpy as np
from scipy import signal, misc
import matplotlib.pyplot as plt

>>> image = misc.ascent ()
>>> w = signal.windows.gaussian (51, 10.0)
>>> image_new = signal.sepfir2d(image, w, w)
>>> plt.figure()
>>> plt.imshow (image)
>>> plt.gray()
>>> plt.title('Original image')
>>> plt.show /()
Original image
0

100 &

200

300

400

500 A

0 200 400

88 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

>>> plt.figure ()

>>> plt.imshow (image_new)

>>> plt.gray ()

>>> plt.title('Filtered image')
>>> plt.show ()

Filtered image

0 200 400

Difference-equation filtering

A general class of linear 1-D filters (that includes convolution filters) are filters described by the difference equation

N M
Zaky[n—k] = Zbkx[n—k],
k=0 k=0

where z [n] is the input sequence and y [n] is the output sequence. If we assume initial rest so that y [n] = 0 for n < 0,
then this kind of filter can be implemented using convolution. However, the convolution filter sequence h [n] could be
infinite if a;, # 0 for k£ > 1. In addition, this general class of linear filter allows initial conditions to be placed on y [n]
for n < 0 resulting in a filter that cannot be expressed using convolution.

The difference equation filter can be thought of as finding y [n] recursively in terms of its previous values
apy[n] = —ary[n—1]—---—any[n—N]+ -+ boz[n] + -+ byx[n— M].

Often, ag = 1 is chosen for normalization. The implementation in SciPy of this general difference equation filter is a
little more complicated than would be implied by the previous equation. It is implemented so that only one signal needs
to be delayed. The actual implementation equations are (assuming ag = 1):

y[n] = box[n]+ 2¢[n—1]

zo[n] = bix[n]+ 21 [n—1] —ay[n]

21 [n] box [n] + 22 [n — 1] — a2y [n]
zk—2[n] = brx_iz[n]+zx_1[n—1]—ax_1y[n]
zk-1[n] = brxn]—agyln],

2.7. Signal Processing (scipy.signal) 89

SciPy Reference Guide, Release 1.8.0

where ' = max (N, M). Note that bx = 0if K > M and ax = 0if K > N. In this way, the output at time n
depends only on the input at time n and the value of zg at the previous time. This can always be calculated as long as the
K values zg [n — 1] ... zx—1 [n — 1] are computed and stored at each time step.

The difference-equation filter is called using the command 1 i It er in SciPy. This command takes as inputs the vector
b, the vector, a, a signal = and returns the vector y (the same length as =) computed using the equation given above. If
is N-D, then the filter is computed along the axis provided. If desired, initial conditions providing the values of zo [—1] to
2k —1 [—1] can be provided or else it will be assumed that they are all zero. If initial conditions are provided, then the final
conditions on the intermediate variables are also returned. These could be used, for example, to restart the calculation in
the same state.

Sometimes, it is more convenient to express the initial conditions in terms of the signals 2 [n] and y [n] . In other words,
perhaps you have the values of « [—M] to 2 [—1] and the values of y [—N] to y [—1] and would like to determine what
values of z,, [—1] should be delivered as initial conditions to the difference-equation filter. It is not difficult to show that,
for0 <m < K,

K—-—m-—1
Zm [n] = Z (bmtp+12 [0 = p] = @mypr1y [0 —pl).
p=0

Using this formula, we can find the initial-condition vector zg [—1] to zx 1 [—1] given initial conditions on y (and x).
The command 1 £i1tic performs this function.

As an example, consider the following system:

y[n] = %x[n] + ix[n —1]+ %y[n —1]

The code calculates the signal y[n| for a given signal x[n]; first for initial conditions y[—1] = 0 (default case), then for
y[—1] =2bymeansof 1filtic.

>>> import numpy as np
>>> from scipy import signal

>>> x = np.array([1l., 0., 0., 0.1)
>>> b = np.array([1.0/2, 1.0/41)
>>> a = np.array([1.0, -1.0/31)
>>> signal.lfilter (b, a, x)
array ([0.5, 0.41666667, 0.13888889, 0.04629631])

>>> zi = signal.lfiltic (b, a, y=I[2.1])

>>> signal.lfilter (b, a, x, zi=zi)

(array ([1.16666667, 0.63888889, 0.21296296, 0.07098765]), array([O0.
-023661]))

Note that the output signal y[n] has the same length as the length as the input signal z[n].

Analysis of Linear Systems

Linear system described a linear-difference equation can be fully described by the coefficient vectors a and b as was done
above; an alternative representation is to provide a factor k, N zeros z; and IV, poles py, respectively, to describe the
system by means of its transfer function H(z), according to

=) = @)z — o)
H(z) k(z_pl)(z_pQ),..(z—pr)

This alternative representation can be obtained with the scipy function t £2zpk; the inverse is provided by zpk2t f.

For the above example we have

920 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

>>> b = np.array ([1.0/2, 1.0/41)

>>> a = np.array([1.0, -1.0/3])

>>> signal.tf2zpk (b, a)

(array ([-0.5]), array([0.33333333]), 0.5)

i.e., the system has a zero at z = —1/2 and a pole at z = 1/3.

The scipy function freqgz allows calculation of the frequency response of a system described by the coefficients a;, and
bi.. See the help of the freqgz function for a comprehensive example.

Filter Design

Time-discrete filters can be classified into finite response (FIR) filters and infinite response (IIR) filters. FIR filters can
provide a linear phase response, whereas IIR filters cannot. SciPy provides functions for designing both types of filters.

FIR Filter

The function i rwin designs filters according to the window method. Depending on the provided arguments, the func-
tion returns different filter types (e.g., low-pass, band-pass...).

The example below designs a low-pass and a band-stop filter, respectively.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> bl .5)

0.3, 0.81)
)
)

signal.firwin (40, O
>>> b2 = signal.firwin (41, [
>>> wl, hl = signal.freqgz (bl
>>> w2, h2 = signal.freqgz (b2

>>> plt.title('Digital filter frequency response')
>>> plt.plot(wl, 20*np.logl0(np.abs(hl)), 'b")

>>> plt.plot (w2, 20*np.logl0(np.abs(h2)), 'r')

>>> plt.ylabel ('Amplitude Response (dB) ')

>>> plt.xlabel ('Frequency (rad/sample)')

>>> plt.grid()

>>> plt.show ()

Note that £irwin uses, per default, a normalized frequency defined such that the value 1 corresponds to the Nyquist
frequency, whereas the function freqgz is defined such that the value 7 corresponds to the Nyquist frequency.

The function i rwinZ2 allows design of almost arbitrary frequency responses by specifying an array of corner frequencies
and corresponding gains, respectively.

The example below designs a filter with such an arbitrary amplitude response.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b = signal.firwin2(150, [0.0, 0.3, 0.6, 1.01, [1.0, 2.0, 0.5, 0.01)
>>> w, h = signal.freqgz (b)

2.7. Signal Processing (scipy.signal) 91

SciPy Reference Guide, Release 1.8.0

Digital filter frequency response

—_ 0 A
m
E _20_
Q
2
o _40_
3
3 —60 -
S -801
2
S —100
£
< _120-

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency (rad/sample)

>>>
>>>
>>>
>>>
>>>
>>>
>>>

plt
plt
plt
plt
plt
plt
plt

.title('Digital filter frequency response')
.plot (w, np.abs(h))
.title('Digital filter frequency response')

.ylabel ('Amplitude Response')
.xlabel ('Frequency (rad/sample) ")
.grid()

.show ()

Digital filter frequency response

2.0 A

1.5 4

1.0 A

0.5 4

Amplitude Response

0.0 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency (rad/sample)

Note the linear scaling of the y-axis and the different definition of the Nyquist frequency in firwin2 and fregz (as
explained above).

92

Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

IIR Filter

SciPy provides two functions to directly design IIR iirdesignand iirfilter, where the filter type (e.g., elliptic)
is passed as an argument and several more filter design functions for specific filter types, e.g., e 1 1ip.

The example below designs an elliptic low-pass filter with defined pass-band and stop-band ripple, respectively. Note
the much lower filter order (order 4) compared with the FIR filters from the examples above in order to reach the same
stop-band attenuation of ~ 60 dB.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> b, a = signal.iirfilter (4, Wn=0.2, rp=5, rs=60, btype='lowpass', ftype=
~'ellip!")

>>> w, h signal.freqgz (b, a)

>>> plt.title('Digital filter frequency response')
>>> plt.plot(w, 20*np.logl0(np.abs(h)))

>>> plt.title('Digital filter frequency response')
>>> plt.ylabel ('Amplitude Response [dB]"'")

>>> plt.xlabel ('Frequency (rad/sample)')

>>> plt.grid()

>>> plt.show ()

Digital filter frequency response

—_ 0
[an]
i)]
° -20
2
o —40
o
[7)]
& —60 -
S
3 —80
=
£ —100 -
<

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency (rad/sample)

Filter Coefficients
Filter coefficients can be stored in several different formats:
e ‘ba’ or ‘tf’ = transfer function coefficients
¢ ‘zpk’ = zeros, poles, and overall gain
* ‘ss’ = state-space system representation
* ‘sos’ = transfer function coefficients of second-order sections

Functions, such as t f2zpk and zpkZ2ss, can convert between them.

2.7. Signal Processing (scipy.signal) 93

SciPy Reference Guide, Release 1.8.0

Transfer function representation

The ba or t £ format is a 2-tuple (b, a) representing a transfer function, where b is a length M+ 1 array of coefficients
of the M-order numerator polynomial, and a is a length N+ 1 array of coefficients of the N-order denominator, as positive,
descending powers of the transfer function variable. So the tuple of b = [by, b1, ...,bps] and a = [ag, a1, ...,an] can
represent an analog filter of the form:

bos™ + by s pop iy SOM s)

H(s) = =
(s) agsN + a1 sVN-D + ... +an Zil\ioais(N—i)

or a discrete-time filter of the form:

H(z) boz™ 4+ b1z by P b
z) = = :
apzN +arzW"D 4 tay SN g,z (N=0)

This “positive powers” form is found more commonly in controls engineering. If M and N are equal (which is true for
all filters generated by the bilinear transform), then this happens to be equivalent to the “negative powers” discrete-time
form preferred in DSP:

Cbg bz by M M pe

H .
=) ap+ a1zt + - Fanz™N Zﬁoaiz*i

Although this is true for common filters, remember that this is not true in the general case. If M and N are not equal, the
discrete-time transfer function coefficients must first be converted to the “positive powers” form before finding the poles
and zeros.

This representation suffers from numerical error at higher orders, so other formats are preferred when possible.

Zeros and poles representation

The zpk format is a 3-tuple (z, p, k), where zis an M-length array of the complex zeros of the transfer function
z = [z0, 21, ---s ZM—1], p is an N-length array of the complex poles of the transfer function p = [po, p1, ..., pnv—1], and k
is a scalar gain. These represent the digital transfer function:

Hzy =k Go20)Em2) (e 2ae) Wi (2= #)

(2 =po)(z —p1) -+ (2 = p(v—1)) Y5 2 —pi)

or the analog transfer function:

H(s) = . B2 = 2) (5~ 2un) _ TS (s =)

(s=po)(s—p1)- (s —pwv-1) [Io'(s—mi)

Although the sets of roots are stored as ordered NumPy arrays, their ordering does not matter: ([-1, -2]1, [-3,
-471, 1) isthe same filteras ([-2, -1], [-4, -3], 1).

State-space system representation

The ss format is a 4-tuple of arrays (A, B, C, D) representing the state-space of an N-order digital/discrete-time
system of the form:

94 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

or a continuous/analog system of the form:
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t),
with P inputs, Q outputs and N state variables, where:
e x is the state vector
* yis the output vector of length Q
* u is the input vector of length P
¢ A is the state matrix, with shape (N, N)
* Bis the input matrix with shape (N, P)
* (C is the output matrix with shape (Q, N)

* D is the feedthrough or feedforward matrix with shape (Q, P) . (In cases where the system does not have a direct
feedthrough, all values in D are zero.)

State-space is the most general representation and the only one that allows for multiple-input, multiple-output (MIMO)
systems. There are multiple state-space representations for a given transfer function. Specifically, the “controllable canon-
ical form” and “observable canonical form” have the same coeflicients as the t £ representation, and, therefore, suffer
from the same numerical errors.

Second-order sections representation

The sos format is a single 2-D array of shape (n_sections, 6), representing a sequence of second-order transfer
functions which, when cascaded in series, realize a higher-order filter with minimal numerical error. Each row corresponds
to a second-order t f representation, with the first three columns providing the numerator coefficients and the last three
providing the denominator coefficients:

[bo, b1, b2, ag, a1, as]

The coefficients are typically normalized, such that a is always 1. The section order is usually not important with floating-
point computation; the filter output will be the same, regardless of the order.

Filter transformations

The IIR filter design functions first generate a prototype analog low-pass filter with a normalized cutoff frequency of 1
rad/sec. This is then transformed into other frequencies and band types using the following substitutions:

Type Transformation
Ip2lp | s = =

1p2h §— o
p<np 5%4.“,02
1p2bs | s — sg+w02

Here, wy is the new cutoff or center frequency, and BW is the bandwidth. These preserve symmetry on a logarithmic
frequency axis.

To convert the transformed analog filter into a digital filter, the b1 1 i near transform is used, which makes the following
substitution:
gy 221
Tz+1'

where T is the sampling time (the inverse of the sampling frequency).

2.7. Signal Processing (scipy.signal) 95

SciPy Reference Guide, Release 1.8.0

Other filters

The signal processing package provides many more filters as well.

Median Filter

A median filter is commonly applied when noise is markedly non-Gaussian or when it is desired to preserve edges. The
median filter works by sorting all of the array pixel values in a rectangular region surrounding the point of interest. The
sample median of this list of neighborhood pixel values is used as the value for the output array. The sample median is the
middle-array value in a sorted list of neighborhood values. If there are an even number of elements in the neighborhood,
then the average of the middle two values is used as the median. A general purpose median filter that works on N-D
arrays is medfilt. A specialized version that works only for 2-D arrays is available as medfilt2d.

Order Filter

A median filter is a specific example of a more general class of filters called order filters. To compute the output at a
particular pixel, all order filters use the array values in a region surrounding that pixel. These array values are sorted and
then one of them is selected as the output value. For the median filter, the sample median of the list of array values is
used as the output. A general-order filter allows the user to select which of the sorted values will be used as the output.
So, for example, one could choose to pick the maximum in the list or the minimum. The order filter takes an additional
argument besides the input array and the region mask that specifies which of the elements in the sorted list of neighbor
array values should be used as the output. The command to perform an order filter is order_filter.

Wiener filter

The Wiener filter is a simple deblurring filter for denoising images. This is not the Wiener filter commonly described in
image-reconstruction problems but, instead, it is a simple, local-mean filter. Let x be the input signal, then the output is

2

2
y:{ g—%mer(le—z)x 02> 02,

x

My 0920 < 027

where m,, is the local estimate of the mean and o2 is the local estimate of the variance. The window for these estimates
is an optional input parameter (default is 3 x 3). The parameter o2 is a threshold noise parameter. If o is not given, then
it is estimated as the average of the local variances.

Hilbert filter

The Hilbert transform constructs the complex-valued analytic signal from a real signal. For example, if x = cos wn, then
y = hilbert (z) would return (except near the edges) y = exp (jwn) . In the frequency domain, the hilbert transform
performs

Y=X-H

)

where H is 2 for positive frequencies, 0 for negative frequencies, and 1 for zero-frequencies.

Analog Filter Design
The functions i irdesign, iirfilter, and the filter design functions for specific filter types (e.g., e 111ip) all have
a flag analog, which allows the design of analog filters as well.

The example below designs an analog (IIR) filter, obtains via ¢ £2zpk the poles and zeros and plots them in the complex
s-plane. The zeros at w ~ 150 and w =~ 300 can be clearly seen in the amplitude response.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

96 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

>>> b, a =
>>> w, h =

signal.iirdesign (wp=100,
signal.freqgs (b, a)

ws=200,

gpass=2.0, gstop=40., analog=True)

>>> plt.title('Analog filter frequency response')
>>> plt.plot (w, 20*np.loglO (np.abs(h)))

>>> plt.ylabel ('Amplitude Response [dB]"')

>>> plt.xlabel ('Frequency")

>>> plt.grid()

>>> plt.show ()

Analog filter frequency response

Amplitude Response [dB]
A
o

—60
_80 L T T T T T T
0 200 400 600 800 1000
Frequency
>>> z, p, k = signal.tf2zpk(b, a)
>>> plt.plot (np.real(z), np.imag(z), 'xb')
>>> plt.plot (np.real(p), np.imag(p), 'or')
>>> plt.legend(['Zeros', 'Poles'], loc=2)
>>> plt.title('Pole / Zero Plot'")
>>> plt.ylabel ('Real')
>>> plt.xlabel ('Imaginary’')
>>> plt.grid()
>>> plt.show ()

2.7.3 Spectral Analysis

Periodogram Measurements

The scipy function periodogram provides a method to estimate the spectral density using the periodogram method.

The example below calculates the periodogram of a sine signal in white Gaussian noise.

2.7. Signal Processing (scipy.signal)

97

SciPy Reference Guide, Release 1.8.0

Pole / Zero Plot

X Zeros X
200 A ® Poles
X
[
— [)
3 0 -
o)
[
X
—200 A
-25 -20 -15 -10 -5 0

Imaginary

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> fs = 10e3

>>> N = leb

>>> amp = 2*np.sqgrt (2)

>>> freq = 1270.0

>>> noise_power = 0.001 * fs / 2

>>> time = np.arange(N) / fs

>>> x = amp*np.sin(2*np.pi*freg*time)

>>> x += np.random.normal (scale=np.sqgrt (noise_power), size=time.shape)

>>> f, Pper_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')

>>> plt.semilogy (f, Pper_spec)
>>> plt.xlabel ('frequency [Hz]")
>>> plt.ylabel ("PSD")

>>> plt.grid()

>>> plt.show ()

Spectral Analysis using Welch’s Method
An improved method, especially with respect to noise immunity, is Welch’s method, which is implemented by the scipy
function welch.

The example below estimates the spectrum using Welch’s method and uses the same parameters as the example above.
Note the much smoother noise floor of the spectrogram.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

98 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

10!

PSD

1077 4

0 1000 2000 3000 4000 5000
frequency [Hz]

>>> fs = 10e3

>>> N = leb

>>> amp = 2*np.sqgrt (2)

>>> freq = 1270.0

>>> noise_power = 0.001 * fs / 2

>>> time = np.arange(N) / fs

>>> x = amp*np.sin(2*np.pi*freg*time)

>>> x += np.random.normal (scale=np.sqgrt (noise_power), size=time.shape)

>>> f, Pwelch_spec = signal.welch(x, fs, scaling='spectrum')

>>> plt.semilogy (f, Pwelch_spec)
>>> plt.xlabel ('frequency [Hz]")
>>> plt.ylabel ('PSD')

>>> plt.grid()

>>> plt.show ()

Lomb-Scargle Periodograms (Lombscargle)

Least-squares spectral analysis (LSSA)'? is a method of estimating a frequency spectrum, based on a least-squares fit of
sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally
boosts long-periodic noise in long-gapped records; LSSA mitigates such problems.

The Lomb-Scargle method performs spectral analysis on unevenly-sampled data and is known to be a powerful way to
find, and test the significance of, weak periodic signals.

For a time series comprising N; measurements X; = X (¢;) sampled at times ¢ ;, where (j = 1, ..., N;), assumed to have
been scaled and shifted, such that its mean is zero and its variance is unity, the normalized Lomb-Scargle periodogram at

I N.R. Lomb “Least-squares frequency analysis of unequally spaced data”, Astrophysics and Space Science, vol 39, pp. 447-462, 1976
2 J.D. Scargle “Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data”, The Astrophysical
Journal, vol 263, pp. 835-853, 1982

2.7. Signal Processing (scipy.signal) 99

SciPy Reference Guide, Release 1.8.0

100 5
[m)
4
1071 3
10_2 E T T T T T T
0 1000 2000 3000 4000 5000
frequency [Hz]
frequency f is
2 2
1 [Z;Vt X cosw(t; — 7‘)} {Z;Vt X;sinw(t; —7)
Pn(f)i

+
2 Z;Vt cos?w(t; — 1) Z;Vt sin® w(t; — 1)

Here, w = 27 f is the angular frequency. The frequency-dependent time offset 7 is given by

tan 2wt = 72;\% Sin 20,
Z;Vt cos 2wt
The 1ombscargle function calculates the periodogram using a slightly modified algorithm due to Townsend?, which

allows the periodogram to be calculated using only a single pass through the input arrays for each frequency.

The equation is refactored as:

Pu(f) = 1 (e, XC +5,X8)? n (e, XS —5,XC)?
" 2 |c20C +2¢,5,08 + 5288 258 —2¢,5,08 + s2CC
and
tan 2wt = ﬂ
- CC-8S°
Here,
Cr = COSWT, S, = sinwr,

3 R.H.D. Townsend, “Fast calculation of the Lomb-Scargle periodogram using graphics processing units.”, The Astrophysical Journal Supplement
Series, vol 191, pp. 247-253, 2010

100 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

while the sums are

N

XC = ZX]‘ coswt;
j
N,

XS =Y X;sinwt
J

Ny
CcC = Z cos? wt;

S = Z cos wt; sinwt;.
J

This requires Ny (2N; + 3) trigonometric function evaluations giving a factor of ~ 2 speed increase over the straightfor-
ward implementation.

2.7.4 Detrend
SciPy provides the function det rend to remove a constant or linear trend in a data series in order to see effect of higher
order.

The example below removes the constant and linear trend of a second-order polynomial time series and plots the remaining
signal components.

>>> import numpy as np
>>> import scipy.signal as signal
>>> import matplotlib.pyplot as plt

>>> t = np.linspace(-10, 10, 20)

>>> y =1 + t + 0.01*t**2

>>> yconst = signal.detrend(y, type='constant')
>>> ylin = signal.detrend(y, type='linear')

>>> plt.plot (
>>> plt.plot (
>>> plt.plot(
>>> plt.grid(
>>> plt.legen
>>> plt.show(

t, y, '-rx'")

t, yconst, '-bo')
t, ylin, '-k+')
)
d
)

(['signal', 'const. detrend', 'linear detrend'])

2.7. Signal Processing (scipy.signal) 101

SciPy Reference Guide, Release 1.8.0

104 7€ signal
—@— const. detrend
5 —— |inear detrend
0 - —t—t
_5 -
_10 _

-10 =5 0 5 10

References

Some further reading and related software:

2.8 Linear Algebra (scipy.linalg)

When SciPy is built using the optimized ATLAS LAPACK and BLAS libraries, it has very fast linear algebra capabilities.
If you dig deep enough, all of the raw LAPACK and BLAS libraries are available for your use for even more speed. In
this section, some easier-to-use interfaces to these routines are described.

All of these linear algebra routines expect an object that can be converted into a 2-D array. The output of these routines
is also a 2-D array.

2.8.1 scipy.linalg vs numpy.linalg

scipy.linalg contains all the functions in numpy.linalg. plus some other more advanced ones not contained in
numpy.linalg.

Another advantage of using scipy.linalgover numpy.linalg is thatitis always compiled with BLAS/LAPACK
support, while for numpy this is optional. Therefore, the scipy version might be faster depending on how numpy was
installed.

Therefore, unless you don’t want to add scipy as a dependency to your numpy program, use scipy.linalg instead
of numpy.linalg.

102 Chapter 2. SciPy User Guide

https://www.numpy.org/devdocs/reference/routines.linalg.html

SciPy Reference Guide, Release 1.8.0

2.8.2 numpy.matrix vs 2-D numpy.ndarray

The classes that represent matrices, and basic operations, such as matrix multiplications and transpose are a part of
numpy. For convenience, we summarize the differences between numpy . mat rix and numpy .ndarray here.

numpy .matrix is matrix class that has a more convenient interface than numpy . ndarray for matrix operations.
This class supports, for example, MATLAB-like creation syntax via the semicolon, has matrix multiplication as default
for the * operator, and contains T and T members that serve as shortcuts for inverse and transpose:

>>> import numpy as np
>>> A = np.mat ('[1 2;3 4]")

>>> A

matrix ([[1, 2],
[3, 411)

>>> A.1T

matrix([[-2. , 1.]
[1.5, =-0.5]
[5 6

>>> b = np.mat (' [5)
>>> Db

matrix ([[5, 6]1)

>>> pb.T

matrix ([[5],
[611)
>>> A*b.T
matrix ([[17],
[3911)

Despite its convenience, the use of the numpy .matrix class is discouraged, since it adds nothing that cannot be ac-
complished with 2-D numpy . ndarray objects, and may lead to a confusion of which class is being used. For example,
the above code can be rewritten as:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array ([[1,2],[3,411)
>>> A
array ([[1, 21,

[3, 411)
>>> linalg.inv (A)
array([[-2. , 1.1,

[1.5, -0.511)
>>> b = np.array ([[5,6]1]) #2D array
>>> b
array ([[5, 611)
>>> b.T
array ([[5],

[611)
>>> A*b #not matrix multiplication!
array ([[5, 127,

[15, 24]1)
>>> A.dot(b.T) #matrix multiplication
array ([[17],

[3911)
>>> b = np.array([5,6]) #1D array
>>> b

(continues on next page)

2.8. Linear Algebra (scipy.linalg) 103

https://numpy.org/devdocs/reference/generated/numpy.matrix.html#numpy.matrix
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

array ([5, 61])

>>> b.T #not matrix transpose!

array ([5, 61)

>>> A.dot (b) #does not matter for multiplication
array ([17, 391)

scipy.linalg operations can be applied equally to numpy .matrix or to 2D numpy .ndarray objects.

2.8.3 Basic routines

Finding the inverse
The inverse of a matrix A is the matrix B, such that AB = I, where I is the identity matrix consisting of ones down the

main diagonal. Usually, B is denoted B = A~! . In SciPy, the matrix inverse of the NumPy array, A, is obtained using
linalg.inv (A),orusing A. I if A isa Matrix. For example, let

1 35
A=|2 5 1/,
2 3 8

then
1 =37 9 22 —1.48 0.36 0.88
Al = % 14 2 -9 | = 0.56 0.08 —0.36
4 -3 1 0.16 —-0.12 0.04

The following example demonstrates this computation in SciPy

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,3,5],12,5,11,12,3,811)
>>> A
array ([[1, 3, 51,
(2, 5, 11,
[2, 3, 811)
>>> linalg.inv (A)
array ([[-1.48, 0.36, 0.88],
[0.56, 0.08, -0.36],
[0.16, -0.12, 0.0411)
>>> A.dot (linalg.inv (A)) #double check
array ([[1.00000000e+00, -1.11022302e-16, -5.55111512e-17],
[3.05311332e-16, 1.00000000e+00, 1.87350135e-16],
[2.22044605e-16, -1.11022302e-16, 1.00000000e+0011)

104 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Solving a linear system

Solving linear systems of equations is straightforward using the scipy command 1 i nalg. solve. This command expects
an input matrix and a right-hand side vector. The solution vector is then computed. An option for entering a symmetric
matrix is offered, which can speed up the processing when applicable. As an example, suppose it is desired to solve the
following simultaneous equations:

r+3y+52z = 10
20+5y+z2 = 8
20 +3y+8 = 3

We could find the solution vector using a matrix inverse:

—1

z 1 3 5 10 1 —232 —9.28
y|=1]12 51 =5 129 = 5.16
z 2 3 8 3 19 0.76

However, it is better to use the linalg.solve command, which can be faster and more numerically stable. In this case, it,
however, gives the same answer as shown in the following example:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1, 2], [3, 411)

>>> A
array ([[1, 27,
[3, 411)
>>> b = np.array ([[5], [61])
>>> b

array ([[5],
[611)
>>> linalg.inv (A) .dot (b) # slow
array ([[-4. 1,
[4.5]1])
>>> A.dot (linalg.inv (A) .dot (b)) - b # check
array ([[8.88178420e-16],
[2.66453526e-15]1])
>>> np.linalg.solve (A, b) # fast
array ([[-4. 1,
[4.5]1])
>>> A.dot (np.linalg.solve (A, b)) - b # check
array ([[0.1,
[0.11)

Finding the determinant

The determinant of a square matrix A is often denoted |A| and is a quantity often used in linear algebra. Suppose a;;
are the elements of the matrix A and let M;; = |A;;| be the determinant of the matrix left by removing the i row and
J th column from A . Then, for any row i,

A=) (—1)" ai; M;;.
J

This is a recursive way to define the determinant, where the base case is defined by accepting that the determinant of a
1 x 1 matrix is the only matrix element. In SciPy the determinant can be calculated with 1 inalg. det. For example,

2.8. Linear Algebra (scipy.linalg) 105

SciPy Reference Guide, Release 1.8.0

the determinant of

1 3 5
A=|2 5 1
2 3 8
is
5 1 2 1 5
R HIE FE

= 1(5-8—3-1)—3(2-8—2-1)4+5(2-3—-2-5) = —25.

. In SciPy, this is computed as shown in this example:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2],[3,411)
>>> A
array ([[1, 21,
(3, 411)
>>> linalg.det (A)
-2.0

Computing norms

Matrix and vector norms can also be computed with SciPy. A wide range of norm definitions are available using different
parameters to the order argument of 1 inalg.norm. This function takes a rank-1 (vectors) or a rank-2 (matrices) array
and an optional order argument (default is 2). Based on these inputs, a vector or matrix norm of the requested order is
computed.

For vector x, the order parameter can be any real number including inf or —inf. The computed norm is
max || ord = inf
min || ord = —inf

ord 1/ord
Dol lord| < 0.

Il =

For matrix A, the only valid values for norm are +2, +1, + inf, and ‘fro’ (or ‘) Thus,

max; y; |a;;j| ord = inf
min;), a;;| ord = —inf
max; y . |a;;| ord =1
[A[l = q min; > |ai;| ord = —1
max o; ord =2
min o; ord = —2
trace (AT A) ord = 'fro’

where o; are the singular values of A.

Examples:

>>> import numpy as np

>>> from scipy import linalg
>>> A=np.array ([[1,2]1,[3,411)
>>> A

(continues on next page)

106 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

array ([[1, 2],
[3, 411)
>>> linalg.norm(A)
5.4772255750516612
>>> linalg.norm(A, 'fro') # frobenius norm is the default
5.4772255750516612
>>> linalg.norm(A,1) # L1 norm (max column sum)
6
>>> linalg.norm (A, -1)
4
>>> linalg.norm(A,np.inf) # L inf norm (max row sum)
7

Solving linear least-squares problems and pseudo-inverses

Linear least-squares problems occur in many branches of applied mathematics. In this problem, a set of linear scaling
coefficients is sought that allows a model to fit the data. In particular, it is assumed that data y; is related to data x; through
a set of coefficients c; and model functions f; (x;) via the model

i =Y cifi (xi) + e,
J

where €; represents uncertainty in the data. The strategy of least squares is to pick the coefficients c; to minimize

2

J(e) =) |vi— chfj (zi)

%

Theoretically, a global minimum will occur when

2 =0=Y"w- Y ek @) | (-5 @)

or
}:q§:fﬂxﬁﬂﬂw) = }:wﬂﬂw)
] z ATAc = AlHy
, where
{A}y; =15 ().

When AHA is invertible, then

c=(A"A)"

Afly = Aly,
where AT is called the pseudo-inverse of A. Notice that using this definition of A the model can be written

y =Ac+e

The command 1inalg. 1stsqg will solve the linear least-squares problem for c given A and y . In addition, 1 inalg.
pinvor linalg.pinvZ (uses a different method based on singular value decomposition) will find AT given A.

2.8. Linear Algebra (scipy.linalg) 107

SciPy Reference Guide, Release 1.8.0

The following example and figure demonstrate the use of 1 inalg. Istsgand 1inalg. pinv forsolving a data-fitting
problem. The data shown below were generated using the model:

Y = cre” " + ey,

where z; = 0.1ifort =1...10, ¢y = 5, and ¢35 = 4. Noise is added to y; and the coefficients c; and cs are estimated
using linear least squares.

>>> import numpy as np
>>> from scipy import linalg
>>> import matplotlib.pyplot as plt

>>> rng = np.random.default_rng()

>>> cl, c2 = 5.0, 2.0

>>> 1 = np.r_[1:11]

>>> xi = 0.1*1

>>> yi = cl*np.exp(—x1i) + c2*xi

>>> zi = yi + 0.05 * np.max(yi) * rng.standard_normal (len(yi))
>>> A = np.c_[np.exp(-x1i)[:, np.newaxis], xi[:, np.newaxis]]
>>> ¢, resid, rank, sigma = linalg.lstsqg(A, zi)

>>> xi2 = np.r_[0.1:1.0:10073]
>>> yi2 = c[0]*np.exp(-x12) + c[l]*xi2

>>> plt.plot(xi,zi, 'x',xi2,yi2)

>>> plt.axis([0,1.1,3.0,5.57)

>>> plt.xlabel ('x_1")

>>> plt.title('Data fitting with linalg.lstsqg')
>>> plt.show()

Data fitting with linalg.Istsq
5.5

5.0 1

4.5 A

4.0 A

3.5 1

3-0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

108 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Generalized inverse

The generalized inverse is calculated using the command 1 inalg.pinvor l1inalg.pinvZ2. These two commands
differ in how they compute the generalized inverse. The first uses the linalg.Istsq algorithm, while the second uses singular
value decomposition. Let A be an M x N matrix, then if M > N, the generalized inverse is

A= (AFA) AT
while if M < N matrix, the generalized inverse is
A* = AT (AAT)T
In the case that M = N, then
At = A7 = A7

as long as A is invertible.

2.8.4 Decompositions

In many applications, it is useful to decompose a matrix using other representations. There are several decompositions
supported by SciPy.

Eigenvalues and eigenvectors

The eigenvalue-eigenvector problem is one of the most commonly employed linear algebra operations. In one popular
form, the eigenvalue-eigenvector problem is to find for some square matrix A scalars A and corresponding vectors v, such
that

Av = \v.
For an V x N matrix, there are N (not necessarily distinct) eigenvalues — roots of the (characteristic) polynomial
|A — A\I| =0.

The eigenvectors, v, are also sometimes called right eigenvectors to distinguish them from another set of left eigenvectors
that satisfy

H _ H
viA=)vp
or
AHVL =)*VL.

With its default optional arguments, the command 1inalg.eig returns A and v. However, it can also return v, and
just A by itself (1inalg.eigvals returns just A as well).
In addition, 1 inalg.eig can also solve the more general eigenvalue problem
Av = J)Bv
Aflv, = XNBfv,

for square matrices A and B. The standard eigenvalue problem is an example of the general eigenvalue problem for
B = I. When a generalized eigenvalue problem can be solved, it provides a decomposition of A as

A =BVAV,

2.8. Linear Algebra (scipy.linalg) 109

SciPy Reference Guide, Release 1.8.0

where V is the collection of eigenvectors into columns and A is a diagonal matrix of eigenvalues.

By definition, eigenvectors are only defined up to a constant scale factor. In SciPy, the scaling factor for the eigenvectors
is chosen so that ||v||2 = iUiQ =1.

As an example, consider finding the eigenvalues and eigenvectors of the matrix

1
A= 2
3

S = Ot
N =N

The characteristic polynomial is

|A — |

(1=N[4-=N(2-7)—-6]-
5[2(2—X) —3]+2[12-3(4—\)]
= XN +7A24+8\-3.

The roots of this polynomial are the eigenvalues of A:

A= 7.9579
Aoy = —1.2577
A3 = 0.2997.

The eigenvectors corresponding to each eigenvalue can be found using the original equation. The eigenvectors associated
with these eigenvalues can then be found.

>>> import numpy as np

>>> from scipy import linalg

>>> A = np.array ([[1, 2], [3, 411)

>>> la, v = linalg.eig(A)

>>> 11, 12 = la

>>> print (11, 12) # eigenvalues

(-0.3722813232690143+07) (5.372281323269014+073)

>>> print(v[:, 0]) # first eigenvector

[-0.82456484 0.56576746]

>>> print(v([:, 11]) # second eigenvector

[-0.41597356 -0.90937671]

>>> print (np.sum(abs(v**2), axis=0)) # eigenvectors are unitary
(1. 1.]

>>> vl = np.array(v[:, 0]).T

>>> print(linalg.norm(A.dot (vl) - 11*vl)) # check the computation
3.23682852457e-16

Singular value decomposition

Singular value decomposition (SVD) can be thought of as an extension of the eigenvalue problem to matrices that are
not square. Let A be an M x N matrix with M and N arbitrary. The matrices A A and AA* are square hermitian
matrices' of size N x N and M x M, respectively. It is known that the eigenvalues of square hermitian matrices are real
and non-negative. In addition, there are at most min (M, V) identical non-zero eigenvalues of A A and AA* . Define
these positive eigenvalues as o2. The square-root of these are called singular values of A. The eigenvectors of A A are
collected by columns into an N x N unitary” matrix V, while the eigenvectors of AA# are collected by columns in

! A hermitian matrix D satisfies D¥ = D.
2 A unitary matrix D satisfies DFD =1 = DD sothat D1 = DH.

110 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

the unitary matrix U, the singular values are collected in an M x N zero matrix 3 with main diagonal entries set to the
singular values. Then

A =UxVv#?

is the singular value decomposition of A. Every matrix has a singular value decomposition. Sometimes, the singular
values are called the spectrum of A. The command 1inalg.svdwillreturn U, V¥, and o; as an array of the singular
values. To obtain the matrix 3, use 1inalg.diagsvd. The following example illustrates the use of 1 inalg. svd:

>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1,2,3],14,5,611)

>>> A
array ([[1, 2, 31,
(4, 5, 611)
>>> M,N = A.shape
>>> U,s,Vh = linalg.svd(A)

>>> Sig = linalg.diagsvd(s,M,N)

>>> U, Vh = U, Vh

>>> U

array ([[-0.3863177 , -0.92236578],
[-0.92236578, 0.3863177 11)

>>> Sig

array ([[9.508032 , 0. , 0. 1,
[0. , 0.77286964, 0. 11)

>>> Vh

array ([[-0.42866713, -0.56630692, -0.7039467],

[

[0.80596391, 0.11238241, -0.58119908],
[0.40824829, -0.81649658, 0.40824829]1])
>>> U.dot (Sig.dot (Vh)) #check computation
array ([[1., 2., 3.1,

[4., 5., 6.11)

LU decomposition

The LU decomposition finds a representation for the M x N matrix A as
A=PLU,

where P is an M x M permutation matrix (a permutation of the rows of the identity matrix), L is in M x K lower
triangular or trapezoidal matrix (K = min (M, N)) with unit-diagonal, and U is an upper triangular or trapezoidal
matrix. The SciPy command for this decomposition is 1 inalg. lu.

Such a decomposition is often useful for solving many simultaneous equations where the left-hand side does not change
but the right-hand side does. For example, suppose we are going to solve

AXi = bl
for many different b;. The LU decomposition allows this to be written as

Because L is lower-triangular, the equation can be solved for Ux; and, finally, x; very rapidly using forward- and back-
substitution. An initial time spent factoring A allows for very rapid solution of similar systems of equations in the future.
If the intent for performing LU decomposition is for solving linear systems, then the command 1 inalg. lu_factor
should be used followed by repeated applications of the command 1inalg.lu_solve to solve the system for each
new right-hand side.

2.8. Linear Algebra (scipy.linalg) 111

SciPy Reference Guide, Release 1.8.0

Cholesky decomposition

Cholesky decomposition is a special case of LU decomposition applicable to Hermitian positive definite matrices. When
A = A and x¥ Ax > 0 for all x, then decompositions of A can be found so that

A = Ufu
A = LL”

, where L is lower triangular and U is upper triangular. Notice that L = U . The command 1inalg.cholesky
computes the Cholesky factorization. For using the Cholesky factorization to solve systems of equations, there are also
linalg.cho_factorand l1inalg.cho_solve routines that work similarly to their LU decomposition counter-
parts.

QR decomposition

The QR decomposition (sometimes called a polar decomposition) works for any M x N array and finds an M x M
unitary matrix Q and an M x N upper-trapezoidal matrix R, such that

A = QR.
Notice that if the SVD of A is known, then the QR decomposition can be found.
A=UxV? =QRr

implies that Q = U and R = XV Note, however, that in SciPy independent algorithms are used to find QR and SVD
decompositions. The command for QR decompositionis 1inalg.gr.

Schur decomposition

For a square N x N matrix, A, the Schur decomposition finds (not necessarily unique) matrices T and Z, such that
A=72TZ",

where Z is a unitary matrix and T is either upper triangular or quasi upper triangular, depending on whether or not a real
Schur form or complex Schur form is requested. For a real Schur form both T and Z are real-valued when A is real-
valued. When A is a real-valued matrix, the real Schur form is only quasi upper triangular because 2 x 2 blocks extrude
from the main diagonal corresponding to any complex-valued eigenvalues. The command 1inalg. schur finds the
Schur decomposition, while the command 1 inalg. rsf2csf converts T and Z from a real Schur form to a complex
Schur form. The Schur form is especially useful in calculating functions of matrices.

The following example illustrates the Schur decomposition:

>>> from scipy import linalg
>>> A = np.mat ('[1 3 2; 1 4 5; 2 3 6]")
>>> T, Z = linalg.schur (A)

>>> T1, 7z1 = linalg.schur (A, 'complex')

>>> T2, 72 = linalg.rsf2csf (T, Z)

>>> T

array ([[9.90012467, 1.78947961, -0.65498528],
[0. , 0.54993766, -1.57754789],
[0. , 0.51260928, 0.54993766]1])

>>> T2

array ([[9.90012467+0.00000000e+00j, -0.32436598+1.55463542e+007,

(continues on next page)

112 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

[

.88619748+5.
. +0.
.06493862+3.
. +0.
.54993766-8.

69027615e-01717,
00000000e+003,
05311332e-163],
00000000e+003, O.
99258408e-01711)

0
0
1
[O
0
1

>>> abs (T # different

array ([

- T2)
1.06604538e-14,
0.00000000e+00,
0.00000000e+00,

2.06969555e+00,
1.33688556e-15,
0.00000000e+00,

0.54993766+8.99258408e-0173,

+0.00000000e+003,

1.69375747e+007,
4.74146496e-017,
1.13220977e-15]1)

may vary

may vary

[
[
[
>>> abs(Z1 - 7Z2) # different
array ([[0.06833781, 0.88091091, 0.795685031],
[0.11857169, 0.44491892, 0.99594171],
[0.12624999, 0.60264117, 0.77257633]11])
>>> T, 7z, T1, 21, T2, Z2 = map(np.mat, (T,2,T1,21,T2,2Z22))
>>> abs (A - Z*T*Z.H) # same
matrix ([5.55111512e-16, 1.77635684e-15,

[

[0.00000000e+00,

[1.11022302e-15,
>>> abs (A - Z1*T1*Z1.H) # s
matrix ([[4.26993904e-15,

[5.77945386e-15,

[7.16681444e-15,

s
[6.02594127e-16,

[2.46275555e-16,
[

>>> abs (A -
matrix ([

Z2*T2*7Z2.H)

3.99680289e-15,
4.44089210e-16,
ame
6.21793362e-15,
6.21798014e-15,
8.90271058e-15,
ame
1.77648931e-15,
3.99684548e-15,
8.88312432e-16,

2.22044605e-151,
8.88178420e-16],
3.55271368e-15]1)

8.00007092e-157,
.06653681e-147,
1.77635764e-1411)

[N

2.22506907e-15],
8.91642616e-16],
4.44104848e-1511)

8.88225111le-1¢,

Interpolative decomposition

scipy.linalg.interpolative contains routines for computing the interpolative decomposition (ID) of a matrix.
For a matrix A € C™*™ of rank k¥ < min{m,n} this is a factorization

Al = [ALl, AlL] = AIL [I T,

where I = [I1;, IT,] is a permutation matrix with IT; € {0, 1}"** i.e., AIl, = AII,T. This can equivalently be written
as A = BP, where B = AIl; and P = [I, T|II" are the skeleton and interpolation matrices, respectively.

See also:
scipy.linalg.interpolative — for more information

2.8.5 Matrix functions

Consider the function f (x) with Taylor series expansion

While this serves as a useful representation of a matrix function, it is rarely the best way to calculate a matrix function.

2.8. Linear Algebra (scipy.linalg) 113

SciPy Reference Guide, Release 1.8.0

Exponential and logarithm functions

The matrix exponential is one of the more common matrix functions. The preferred method for implementing the matrix
exponential is to use scaling and a Padé approximation for e”. This algorithm is implemented as 1 inalg. expm.

The inverse of the matrix exponential is the matrix logarithm defined as the inverse of the matrix exponential:
A =exp(log(A)).

The matrix logarithm can be obtained with 1inalg. Iogm.

Trigonometric functions

The trigonometric functions, sin, cos, and tan, are implemented for matrices in 1 inalg.sinm, linalg.cosm, and
linalg. tanm, respectively. The matrix sine and cosine can be defined using Euler’s identity as

JA _ o—JA
sin(A) = ¢ c
2j
JA | —jA
cos(A) = grte ™
2
The tangent is
tan (z) = sin (2) _ [cos (z)] " sin (x)
~ cos(x)

and so the matrix tangent is defined as

[cos (A)] 'sin (A).

Hyperbolic trigonometric functions

The hyperbolic trigonometric functions, sinh, cosh, and tanh, can also be defined for matrices using the familiar defini-
tions:

A _ _—-A
sinh (A) = &2 26

A —A
cosh (A) = %
tanh (A) = [cosh(A)] 'sinh(A).

These matrix functions can be found using 1 inalg. sinhm, 1inalg.coshm,and l1inalg.tanhm.

Arbitrary function

Finally, any arbitrary function that takes one complex number and returns a complex number can be called as a matrix
function using the command 1inalg. funm. This command takes the matrix and an arbitrary Python function. It then
implements an algorithm from Golub and Van Loan’s book “Matrix Computations” to compute the function applied to
the matrix using a Schur decomposition. Note that the function needs to accept complex numbers as input in order to work
with this algorithm. For example, the following code computes the zeroth-order Bessel function applied to a matrix.

114 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

>>> from scipy import special, linalg
>>> rng = np.random.default_rng()
>>> A = rng.random((3, 3))

>>> B = linalg.funm(A, lambda x:

>>> A

array ([[0.06369197, 0.90647174, 0.98024544],
[0.68752227, 0.5604377 , 0.49142032]
[0.86754578, 0.9746787 , 0.37932682]

>>> B

special.jv (0, x))

1)

array([[0.6929219 , -0.29728805, -0.1593089¢7,
[-0.16226043, 0.71967826, —-0.22709386]

[-0.19945564, -0.33379957,

>>> linalg.eigvals ()

array ([1.94835336+0.7,

>>> special.jv (0, linalg.eigvals(A))
array ([0.25375345+0.3, 0.87379738+0.7,
>>> linalg.eigvals (B)

array ([0.25375345+0.3, 0.87379738+0.7,

-0.72219681+0.7,

0.7025902211)
-0.22270006+0.31)
0.98763955+0.317)

0.98763955+0.37])

Note how, by virtue of how matrix analytic functions are defined, the Bessel function has acted on the matrix eigenvalues.

2.8.6 Special matrices

SciPy and NumPy provide several functions for creating special matrices that are frequently used in engineering and

science.
Type Function Description
block diagonal scipy.linalg.block_diag Create a block diagonal matrix from the provided
arrays.
circulant scipy.linalg.circulant Create a circulant matrix.
companion scipy.linalg.companion Create a companion matrix.
convolution scipy.linalg. Create a convolution matrix.

convolution_matrix

Discrete Fourier

scipy.linalg.dft

Create a discrete Fourier transform matrix.

Fiedler scipy.linalg.fiedler Create a symmetric Fiedler matrix.
Fiedler scipy.linalg. Create a Fiedler companion matrix.
Companion fiedler companion

Hadamard scipy.linalg.hadamard Create an Hadamard matrix.
Hankel scipy.linalg.hankel Create a Hankel matrix.

Helmert scipy.linalg.helmert Create a Helmert matrix.

Hilbert scipy.linalg.hilbert Create a Hilbert matrix.

Inverse Hilbert

scipy.linalg.invhilbert

Create the inverse of a Hilbert matrix.

Leslie

scipy.linalg.leslie

Create a Leslie matrix.

Pascal scipy.linalg.pascal Create a Pascal matrix.

Inverse Pascal scipy.linalg.invpascal Create the inverse of a Pascal matrix.
Toeplitz scipy.linalg.toeplitz Create a Toeplitz matrix.

Van der Monde numpy .vander Create a Van der Monde matrix.

For examples of the use of these functions, see their respective docstrings.

2.8. Linear Algebra (scipy.linalg)

115

https://numpy.org/devdocs/reference/generated/numpy.vander.html#numpy.vander

SciPy Reference Guide, Release 1.8.0

2.9 Sparse eigenvalue problems with ARPACK

2.9.1 Introduction

ARPACK! is a Fortran package which provides routines for quickly finding a few eigenvalues/eigenvectors of large sparse
matrices. In order to find these solutions, it requires only left-multiplication by the matrix in question. This operation
is performed through a reverse-communication interface. The result of this structure is that ARPACK is able to find
eigenvalues and eigenvectors of any linear function mapping a vector to a vector.

All of the functionality provided in ARPACK is contained within the two high-level interfaces scipy. sparse.
linalg.eigs and scipy.sparse.linalg.eigsh. eigs provides interfaces for finding the eigenval-
ues/vectors of real or complex nonsymmetric square matrices, while eigsh provides interfaces for real-symmetric or
complex-hermitian matrices.

2.9.2 Basic functionality

ARPACK can solve either standard eigenvalue problems of the form
Ax = Mx

or general eigenvalue problems of the form

Ax = AMx.

The power of ARPACK is that it can compute only a specified subset of eigenvalue/eigenvector pairs. This is accomplished
through the keyword which. The following values of which are available:

e which = 'LM' :Eigenvalues with largest magnitude (e 1gs, eigsh), thatis, largest eigenvalues in the euclidean
norm of complex numbers.

e which = 'SM' : Eigenvalues with smallest magnitude (eigs, eigsh), that is, smallest eigenvalues in the
euclidean norm of complex numbers.

e which = 'LR' :FEigenvalues with largest real part (eigs).

e which = 'SR’ :FEigenvalues with smallest real part (eigs).

e which = 'LI' :Eigenvalues with largest imaginary part (eigs).

e which = 'SI' :Eigenvalues with smallest imaginary part (eigs).

e which = 'LA' :Eigenvalues with largest algebraic value (e igsh), that is, largest eigenvalues inclusive of any

negative sign.

e which = 'SA' :Eigenvalues with smallest algebraic value (eigsh), that is, smallest eigenvalues inclusive of
any negative sign.
e which = 'BE' : Eigenvalues from both ends of the spectrum (eigsh).
Note that ARPACK is generally better at finding extremal eigenvalues, that is, eigenvalues with large magnitudes. In

particular, using which = 'SM' may lead to slow execution time and/or anomalous results. A better approach is to
use shift-invert mode.

! http://www.caam.rice.edu/software/ ARPACK/

116 Chapter 2. SciPy User Guide

http://www.caam.rice.edu/software/ARPACK/

SciPy Reference Guide, Release 1.8.0

2.9.3 Shift-invert mode
Shift-invert mode relies on the following observation. For the generalized eigenvalue problem
Ax = AMx,
it can be shown that
(A—oM) ' Mx = vx,

where

2.9.4 Examples

Imagine you’d like to find the smallest and largest eigenvalues and the corresponding eigenvectors for a large matrix.
ARPACK can handle many forms of input: dense matrices ,such as numpy .ndarray instances, sparse matrices,
such as scipy.sparse.csr_matrix, or a general linear operator derived from scipy.sparse.linalg.
LinearOperator. For this example, for simplicity, we’ll construct a symmetric, positive-definite matrix.

>>> import numpy as np

>>> from scipy.linalg import eig, eigh

>>> from scipy.sparse.linalg import eigs, eigsh
>>> np.set_printoptions (suppress=True)

>>> rng = np.random.default_rng()

>>>

>>> X = rng.random((100, 100)) - 0.5

>>> X = np.dot (X, X.T) # create a symmetric matrix

We now have a symmetric matrix X, with which to test the routines. First, compute a standard eigenvalue decomposition
using eigh:

>>> evals_all, evecs_all = eigh(X)

As the dimension of X grows, this routine becomes very slow. Especially, if only a few eigenvectors and eigenvalues are
needed, ARPACK can be a better option. First let’s compute the largest eigenvalues (which = 'LM') of X and compare
them to the known results:

>>> evals_large, evecs_large = eigsh (X, 3, which="'LM")
>>> print (evals_all[-3:])

[29.22435321 30.05590784 30.58591252]

>>> print (evals_large)

[29.22435321 30.05590784 30.58591252]

>>> print (np.dot (evecs_large.T, evecs_all[:,-3:1))

array ([[-1. 0. 0.1, # may vary (signs)
[0. 1. 0.7,
[-0. 0. =-1.11)

The results are as expected. ARPACK recovers the desired eigenvalues and they match the previously known results.
Furthermore, the eigenvectors are orthogonal, as we’d expect. Now, let’s attempt to solve for the eigenvalues with smallest
magnitude:

2.9. Sparse eigenvalue problems with ARPACK 117

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

SciPy Reference Guide, Release 1.8.0

>>> evals_small, evecs_small = eigsh (X, 3, which='SM")
Traceback (most recent call last): # may vary (convergence)

scipy.sparse.linalg._eigen.arpack.arpack.ArpackNoConvergence:
ARPACK error -1: No convergence (1001 iterations, 0/3 eigenvectors converged)

Oops. We see that, as mentioned above, ARPACK is not quite as adept at finding small eigenvalues. There are a few ways
this problem can be addressed. We could increase the tolerance (to1) to lead to faster convergence:

>>> evals_small, evecs_small = eigsh(X, 3, which='SM', tol=1E-2)

>>> evals_all[:3]

array ([0.00053181, 0.00298319, 0.013878211])

>>> evals_small

array ([0.00053181, 0.00298319, 0.01387821])

>>> np.dot (evecs_small.T, evecs_all[:,:3])

array ([[0.99999999 0.00000024 -0.00000049], # may vary (signs)
[-0.00000023 0.99999999 0.000000567,
[0.00000031 -0.00000037 0.9999985211)

This works, but we lose the precision in the results. Another option is to increase the maximum number of iterations
(maxiter) from 1000 to 5000:

>>> evals_small, evecs_small = eigsh(X, 3, which='SM', maxiter=5000)
>>> evals_all[:3]
array ([0.00053181, 0.00298319, 0.013878211])
>>> evals_small
array ([0.00053181, 0.00298319, 0.013878211])
>>> np.dot (evecs_small.T, evecs_all[:,:3])
array ([[1. 0. 0.1, # may vary (signs)
[-0. 1. 0.1,
[0. 0. -1.11)

We get the results we’d hoped for, but the computation time is much longer. Fortunately, ARPACK contains a mode that
allows a quick determination of non-external eigenvalues: shift-invert mode. As mentioned above, this mode involves
transforming the eigenvalue problem to an equivalent problem with different eigenvalues. In this case, we hope to find
eigenvalues near zero, so we'll choose sigma = 0. The transformed eigenvalues will then satisfy v = 1/(A—0) = 1/,
so our small eigenvalues \ become large eigenvalues v.

>>> evals_small, evecs_small = eigsh(X, 3, sigma=0, which="'LM")
>>> evals_all[:3]
array ([0.00053181, 0.00298319, 0.01387821])
>>> evals_small
array ([0.00053181, 0.00298319, 0.01387821])
>>> np.dot (evecs_small.T, evecs_all[:,:3])
array ([[1. 0. 0.1, # may vary (signs)
[0. -1. -0.]1,
[-0. -0. 1.11)

We get the results we were hoping for, with much less computational time. Note that the transformation from v — A
takes place entirely in the background. The user need not worry about the details.

The shift-invert mode provides more than just a fast way to obtain a few small eigenvalues. Say, you desire to find internal
eigenvalues and eigenvectors, e.g., those nearest to A = 1. Simply set sigma = 1 and ARPACK will take care of the
rest:

118 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

>>> evals_mid, evecs_mid = eigsh (X, 3, sigma=1, which='LM")
>>> i_sort = np.argsort(abs(l. / (1 - evals_all)))[-3:]

>>> evals_all[i_sort]

array ([0.94164107, 1.05464515, 0.99090277])

>>> evals_mid

array ([0.94164107, 0.99090277, 1.05464515])

>>> print (np.dot (evecs_mid.T, evecs_all[:,i_sort]))

array ([[-0. 1. 0.], # may vary (signs)
[-0. -0. 1.1,
[1. 0. 0.1]

The eigenvalues come out in a different order, but they’re all there. Note that the shift-invert mode requires the internal
solution of a matrix inverse. This is taken care of automatically by eigsh and eigs, but the operation can also be
specified by the user. See the docstring of scipy.sparse.linalg.eigsh and scipy.sparse.linalg.
eigs for details.

2.9.5 Use of LinearOperator

We consider now the case where you'd like to avoid creating a dense matrix and use scipy.sparse.linalg.
LinearOperator instead. Our first linear operator applies element-wise multiplication between the input vector and
a vector d provided by the user to the operator itself. This operator mimics a diagonal matrix with the elements of
d along the main diagonal and it has the main benefit that the forward and adjoint operations are simple element-wise
multiplications other than matrix-vector multiplications. For a diagonal matrix, we expect the eigenvalues to be equal
to the elements along the main diagonal, in this case d. The eigenvalues and eigenvectors obtained with eigsh are
compared to those obtained by using e i gh when applied to the dense matrix:

>>> from scipy.sparse.linalg import LinearOperator
>>> class Diagonal (LinearOperator):
def _ init_ (self, diag, dtype='float32'):
self.diag = diag
self.shape = (len(self.diag), len(self.diag))
self.dtype = np.dtype (dtype)
def _matvec(self, x):
return self.diag*x
def _rmatvec(self, Xx):
return self.diag*x

>>> N = 100

>>> rng = np.random.default_rng()

>>> d = rng.normal (0, 1, N).astype(np.float64)
>>> D = np.diag(d)

>>> Dop = Diagonal(d, dtype=np.float64)

>>> evals_all, evecs_all = eigh (D)

>>> evals_large, evecs_large = eigsh(Dop, 3, which='LA', maxiter=1e3)
>>> evals_all[-3:]

array ([1.53092498, 1.77243671, 2.00582508])

>>> evals_large

array ([1.53092498, 1.77243671, 2.00582508])

>>> print (np.dot (evecs_large.T, evecs_alll:,-3:1))

array ([[-1. 0. 0.], # may vary (signs)

(continues on next page)

2.9. Sparse eigenvalue problems with ARPACK 119

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

In this case, we have created a quick and easy Diagonal operator. The external library PyLops provides similar
capabilities in the Diagonal operator, as well as several other operators.

Finally, we consider a linear operator that mimics the application of a first-derivative stencil. In this case, the operator is
equivalent to a real nonsymmetric matrix. Once again, we compare the estimated eigenvalues and eigenvectors with those
from a dense matrix that applies the same first derivative to an input signal:

>>> class FirstDerivative (LinearOperator):

def _ init_ (self, N, dtype='float32"):
self.N = N
self.shape (self.N, self.N)
self.dtype = np.dtype (dtype)

def _matvec(self, x):
y = np.zeros(self.N, self.dtype)
y[1:=1] = (0.5*x[2:]-0.5*x[0:-217)
return y

def _rmatvec(self, x):
y = np.zeros(self.N, self.dtype)
y[0:=2] = y[0:=2] = (0.5*x[1:-11)
yi2:] = y[2:] + (0.5*x[1:-11)
return y

>>> N = 21

>>> D = np.diag(0.5*np.ones(N-1), k=1) - np.diag(0.5*np.ones (N-1), k=-1)
>>> D[0] = D[-1] = 0 # take away edge effects

>>> Dop = FirstDerivative (N, dtype=np.floatb64)

>>> evals_all, evecs_all = eig(D)

>>> evals_large, evecs_large = eigs(Dop, 4, which='LI")
>>> evals_all_imag = evals_all.imag

>>> isort_imag = np.argsort (np.abs(evals_all_imag))

>>> evals_all_imag = evals_all_imag[isort_imag]

>>> evals_large_imag = evals_large.imag

>>> isort_imag = np.argsort (np.abs(evals_large_imag))

>>> evals_large_imag = evals_large_imag[isort_imag]

>>> evals_all_imag[—-4:]

array ([-0.95105652, 0.95105652, -0.98768834, 0.987688341])
>>> evals_large_imag

array ([0.95105652, -0.95105652, 0.98768834, -0.987688341])

Note that the eigenvalues of this operator are all imaginary. Moreover, the keyword which="LI"' of scipy.
sparse.linalg.eigs produces the eigenvalues with largest absolute imaginary part (both positive and negative).
Again, a more advanced implementation of the first-derivative operator is available in the PyLops library under the name
of FirstDerivative operator.

120 Chapter 2. SciPy User Guide

https://pylops.readthedocs.io
https://pylops.readthedocs.io/en/latest/api/generated/pylops.Diagonal.html#pylops.Diagonal
https://pylops.readthedocs.io
https://pylops.readthedocs.io/en/latest/api/generated/pylops.FirstDerivative.html

SciPy Reference Guide, Release 1.8.0

2.9.6 References

2.10 Compressed Sparse Graph Routines (scipy.sparse.
csgraph)

2.10.1 Example: Word Ladders

A Word Ladder is a word game invented by Lewis Carroll, in which players find paths between words by switching one
letter at a time. For example, one can link “ape” and “man” in the following way:

ape — apt — ait — bit — big — bag — mag — man

Note that each step involves changing just one letter of the word. This is just one possible path from “ape” to “man”, but
is it the shortest possible path? If we desire to find the shortest word-ladder path between two given words, the sparse
graph submodule can help.

First, we need a list of valid words. Many operating systems have such a list built in. For example, on linux, a word list
can often be found at one of the following locations:

/usr/share/dict
/var/lib/dict

Another easy source for words are the Scrabble word lists available at various sites around the internet (search with your
favorite search engine). We'll first create this list. The system word lists consist of a file with one word per line. The
following should be modified to use the particular word list you have available:

>>> word_list open ('/usr/share/dict/words') .readlines ()
>>> word_list = map(str.strip, word_list)

‘We want to look at words of length 3, so let’s select just those words of the correct length. We’ll also eliminate words which
start with upper-case (proper nouns) or contain non-alphanumeric characters, like apostrophes and hyphens. Finally, we'll
make sure everything is lower-case for comparison later:

>>> word_list = [word for word in word_list if len(word) == 3]
>>> word_list = [word for word in word_list if word[0].islower ()]
>>> word_list = [word for word in word_list if word.isalpha()]

>>> word_list list (map(str.lower, word_list))
>>> len (word_list)
586 # may vary

Now we have a list of 586 valid three-letter words (the exact number may change depending on the particular list used).
Each of these words will become a node in our graph, and we will create edges connecting the nodes associated with each
pair of words which differs by only one letter.

There are efficient ways to do this, and inefficient ways to do this. To do this as efficiently as possible, we’re going to use
some sophisticated numpy array manipulation:

>>> import numpy as np

>>> word_list = np.asarray(word_list)

>>> word_list.dtype # these are unicode characters in Python 3
dtype ('<U3")

>>> word_list.sort () # sort for quick searching later

We have an array where each entry is three unicode characters long. We’d like to find all pairs where exactly one character
is different. We'll start by converting each word to a 3-D vector:

2.10. Compressed Sparse Graph Routines (scipy.sparse.csgraph) 121

https://en.wikipedia.org/wiki/Word_ladder

SciPy Reference Guide, Release 1.8.0

>>> word_bytes = np.ndarray((word_list.size, word_list.itemsize),
dtype='uintg8"',
. buffer=word_list.data)
>>> # each unicode character is four bytes long. We only need first byte
>>> # we know that there are three characters in each word
>>> word_bytes = word_bytes[:, ::word_list.itemsize//3]
>>> word_bytes.shape
(586, 3) # may vary

Now, we'll use the Hamming distance between each point to determine which pairs of words are connected. The Hamming
distance measures the fraction of entries between two vectors which differ: any two words with a Hamming distance equal
to 1/N, where N is the number of letters, are connected in the word ladder:

>>> from scipy.spatial.distance import pdist, squareform
>>> from scipy.sparse import csr_matrix

>>> hamming_dist = pdist (word_bytes, metric='hamming')

>>> # there are three characters in each word

>>> graph = csr_matrix(squareform(hamming_dist < 1.5 / 3))

When comparing the distances, we don’t use an equality because this can be unstable for floating point values. The
inequality produces the desired result, as long as no two entries of the word list are identical. Now, that our graph is set
up, we'll use a shortest path search to find the path between any two words in the graph:

>>> il = word_list.searchsorted('ape')
>>> 12 = word_list.searchsorted('man')
>>> word_list[il]

'ape
>>> word_list[12]
'man'

We need to check that these match, because if the words are not in the list, that will not be the case. Now, all we need
is to find the shortest path between these two indices in the graph. We’ll use Dijkstra’s algorithm, because it allows us to
find the path for just one node:

>>> from scipy.sparse.csgraph import dijkstra

>>> distances, predecessors = dijkstra(graph, indices=il,

Ce . return_predecessors=True)
>>> print (distances[i2])
5.0 # may vary

So we see that the shortest path between “ape” and “man” contains only five steps. We can use the predecessors returned
by the algorithm to reconstruct this path:

>>> path = []
>>> 1 = i2
>>> while i != il:
path.append (word_list[i])
ce i = predecessors[i]
>>> path.append (word_list[il])
>>> print (path[::-1])
["ape', 'apt', 'opt', 'oat', 'mat', 'man'] # may vary

This is three fewer links than our initial example: the path from “ape” to “man” is only five steps.

122 Chapter 2. SciPy User Guide

https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

SciPy Reference Guide, Release 1.8.0

Using other tools in the module, we can answer other questions. For example, are there three-letter words which are not
linked in a word ladder? This is a question of connected components in the graph:

>>> from scipy.sparse.csgraph import connected_components

>>> N_components, component_list = connected_components (graph)
>>> print (N_components)

15 # may vary

In this particular sample of three-letter words, there are 15 connected components: that is, 15 distinct sets of words with
no paths between the sets. How many words are there in each of these sets? We can learn this from the list of components:

>>> [np.sum(component_list == i) for i in range (N_components)]
(574, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] # may vary

There is one large connected set and 14 smaller ones. Let’s look at the words in the smaller ones:

>>> [list(word_list[np.nonzero (component_list == 1i)]) for i in range(l, N
—components)]

'aha'], # may vary
chi'],

[

[
[
[
[
[
['is
['kh
['nt
[
[
[
[
[
[

These are all the three-letter words which do not connect to others via a word ladder.

We might also be curious about which words are maximally separated. Which two words take the most links to connect?
We can determine this by computing the matrix of all shortest paths. Note that, by convention, the distance between two
non-connected points is reported to be infinity, so we’ll need to remove these before finding the maximum:

>>> distances, predecessors = dijkstra(graph, return_predecessors=True)
>>> max_distance = np.max(distances[~np.isinf (distances)])

>>> print (max_distance)

13.0 # may vary

So, there is at least one pair of words which takes 13 steps to get from one to the other! Let’s determine which these are:

>>> 11, 12 = np.nonzero(distances == max_distance)
>>> list(zip(word_list([il], word_list[i2]))
[("imp', 'ohm'), # may vary

'ohs', 'imp'
'ohs', 'ump'

(continues on next page)

2.10. Compressed Sparse Graph Routines (scipy.sparse.csgraph) 123

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

('ump', 'ohm'),
("ump', 'ohs')]

We see that there are two pairs of words which are maximally separated from each other: ‘imp’ and ‘ump’ on the one
hand, and ‘ohm’ and ‘ohs’ on the other. We can find the connecting list in the same way as above:

>>> path = []

>>> 1 = 12[0]

>>> while i != i1[0]:
path.append(word_list[i]

c.. i = predecessors([il[0],
>>> path.append (word_list[11[0]]
>>> print (path[::-11])

["imp', 'amp', 'asp', 'ass', 'ads', 'add', 'aid', 'mid', 'mod', 'moo', 'too',
—'tho', 'oho', 'ohm'] # may vary

)
i]
)

This gives us the path we desired to see.

Word ladders are just one potential application of scipy’s fast graph algorithms for sparse matrices. Graph theory makes
appearances in many areas of mathematics, data analysis, and machine learning. The sparse graph tools are flexible enough
to handle many of these situations.

2.11 Spatial data structures and algorithms (scipy.spatial)

scipy.spatial can compute triangulations, Voronoi diagrams, and convex hulls of a set of points, by leveraging the
Qhull library.

Moreover, it contains KD T ree implementations for nearest-neighbor point queries, and utilities for distance computations
in various metrics.

2.11.1 Delaunay triangulations

The Delaunay triangulation is a subdivision of a set of points into a non-overlapping set of triangles, such that no point is
inside the circumcircle of any triangle. In practice, such triangulations tend to avoid triangles with small angles.

Delaunay triangulation can be computed using scipy. spatial as follows:

>>> from scipy.spatial import Delaunay
>>> points = np.array([[0, 0], [0, 1.1], [1, O], [1, 1]])
>>> tri = Delaunay (points)

We can visualize it:

>>> import matplotlib.pyplot as plt
>>> plt.triplot (points[:,0], points[:,1]
>>> plt.plot (points[:,0], points[:,1]1, '

, tri.simplices)
o'")

And add some further decorations:

>>> for j, p in enumerate (points):
plt.text (p[0]-0.03, pl[1l]1+0.03, Jj, ha='right') # label the points

(continues on next page)

124 Chapter 2. SciPy User Guide

http://qhull.org/

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> for j, s in enumerate (tri.simplices):
P = points[s].mean (axis=0)
. plt.text (p[0], pll], '#2d' % 3, ha='center') # label triangles
>>> plt.xlim(-0.5, 1.5); plt.ylim(-0.5, 1.5)
>>> plt.show ()

15
1
1.0 - 3
#1
0.5 -
#0

0.0 1 0 2

~0.5

—0.50-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

The structure of the triangulation is encoded in the following way: the simplices attribute contains the indices of the
points in the point s array that make up the triangle. For instance:

>> i =1
>>> tri.simplices|[i, :]
array ([3, 1, 0], dtype=int32)
>>> points[tri.simplices[i, :]]
array ([[1. , 1. 1,

[o. , 1.171,

[0., 0. 11

Moreover, neighboring triangles can also be found:

>>> tri.neighbors[i]
array ([-1, 0, -1], dtype=int32)

What this tells us is that this triangle has triangle #0 as a neighbor, but no other neighbors. Moreover, it tells us that
neighbor 0 is opposite the vertex 1 of the triangle:

>>> points[tri.simplices[i, 1]]
array ([0. , 1.117)

Indeed, from the figure, we see that this is the case.

Qhull can also perform tessellations to simplices for higher-dimensional point sets (for instance, subdivision into tetrahedra
in 3-D).

2.11. Spatial data structures and algorithms (scipy.spatial) 125

SciPy Reference Guide, Release 1.8.0

Coplanar points

It is important to note that not all points necessarily appear as vertices of the triangulation, due to numerical precision
issues in forming the triangulation. Consider the above with a duplicated point:

>>> points = np.array([([O0, 0], [O, 11, [1, 01, [1, 11, [1, 111)
>>> tri = Delaunay (points)

>>> np.unique (tri.simplices.ravel())

array ([0, 1, 2, 3], dtype=int32)

Observe that point #4, which is a duplicate, does not occur as a vertex of the triangulation. That this happened is recorded:

>>> tri.coplanar
array ([[4, 0, 31], dtype=int32)

This means that point 4 resides near triangle 0 and vertex 3, but is not included in the triangulation.

Note that such degeneracies can occur not only because of duplicated points, but also for more complicated geometrical
reasons, even in point sets that at first sight seem well-behaved.

However, Qhull has the “QJ” option, which instructs it to perturb the input data randomly until degeneracies are resolved:

>>> tri = Delaunay (points, ghull_options="0QJ Pp")
>>> points[tri.simplices]
array ([[[1, 07,

[N
~
[N
o~
~

~

—

~
~

~

o~
~

~

~

o~
~

~

—

~
~

~

—

L s e T e U s e s A s e B B

U U VR VT
~

o~
fa—

~

PP, OO0OOR PP PO
<
PP PO, P ORRPO

Two new triangles appeared. However, we see that they are degenerate and have zero area.

2.11.2 Convex hulls

A convex hull is the smallest convex object containing all points in a given point set.

These can be computed via the Qhull wrappers in scipy. spatial as follows:

>>> from scipy.spatial import ConvexHull

>>> rng = np.random.default_rng()

>>> points = rng.random((30, 2)) # 30 random points in 2-D
>>> hull = ConvexHull (points)

The convex hull is represented as a set of N 1-D simplices, which in 2-D means line segments. The storage scheme is
exactly the same as for the simplices in the Delaunay triangulation discussed above.

‘We can illustrate the above result:

126 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

>>> import matplotlib.pyplot as plt

>>> plt.plot (points[:,0], points[:,1], 'o'")

>>> for simplex in hull.simplices:

. . plt.plot (points([simplex, 0], points[simplex,1], 'k-")
>>> plt.show ()

e
o
[
o
e
¢ o
o o
0.0 0.2 0.4 0.6 0.8 1.0

The same can be achieved with scipy.spatial.convex_hull_plot_2d.

2.11.3 Voronoi diagrams

A Voronoi diagram is a subdivision of the space into the nearest neighborhoods of a given set of points.

There are two ways to approach this object using scipy. spatial. First, one can use the KDTree to answer the
question “which of the points is closest to this one”, and define the regions that way:

>>> from scipy.spatial import KDTree

>>> points = np.array([[0, 01, [0, 11, [0, 21,
. (2, 01, 2, 11, [2, 211)

>>> tree = KDTree (points)

>>> tree.query([0.1, 0.1])

(0.14142135623730953, 0)

So the point (0.1, 0.1) belongs to region 0. In color:

>>> x = np.linspace(-0.5, 2.5, 31)

>>> y = np.linspace(-0.5, 2.5, 33)

>>> xx, yy = np.meshgrid(x, vy)

>>> xy = np.c_[xx.ravel (), yy.ravel ()]

>>> import matplotlib.pyplot as plt

>>> dx_half, dy_half = np.diff(x[:2])[0] / 2., np.diff(y[:2])[0] / 2.
>>> x_edges = np.concatenate((x - dx_half, [x[-1] + dx_half]))

>>> y_edges = np.concatenate((y - dy_half, [y[-1] + dy_halfl]))

>>> plt.pcolormesh (x_edges, y_edges, tree.query(xy) [1l].reshape (33, 31),.
—shading="'flat")

(continues on next page)

2.11. Spatial data structures and algorithms (scipy.spatial) 127

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> plt.plot (points([:,0], points[:,1], 'ko')
>>> plt.show ()

-0.5 0.0 0.5 1.0 1.5 2.0

This does not, however, give the Voronoi diagram as a geometrical object.

The representation in terms of lines and points can be again obtained via the Qhull wrappers in scipy. spatial:

>>> from scipy.spatial import Voronoi
>>> vyor = Voronoi (points)

>>> vor.vertices
array ([[0.5, 0.5],
5 1
.5, 0.
5 1

14

[]
[1,
[]
[]

[C2ENCRNE)]

1)

The Voronoi vertices denote the set of points forming the polygonal edges of the Voronoi regions. In this case, there are
9 different regions:

>>> vor.regions
[[]/ [_11 O]r [_1/ 117 [1/ _11 O]I [31 _:I-r 2]/ [_11 3]! [_11 2]! [OI 1/ 3! 2]/
— [21 _11 O]/ [31 _11 1]]

Negative value —1 again indicates a point at infinity. Indeed, only one of the regions, [0, 1, 3, 2], is bounded.
Note here that due to similar numerical precision issues as in Delaunay triangulation above, there may be fewer Voronoi
regions than input points.

The ridges (lines in 2-D) separating the regions are described as a similar collection of simplices as the convex hull pieces:

>>> vor.ridge_vertices
[[_l/ O]r [_lr O]r [_j-r l]/ [_11 l]/ [Or 1]7 [_11 3]! [_11 2]/ [27 3]/ [_11*—'
=31, (-1, 2], [1, 31, [0, 2]]

These numbers present the indices of the Voronoi vertices making up the line segments. —1 is again a point at infinity —
only 4 of the 12 lines are a bounded line segment, while others extend to infinity.

128 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

The Voronoi ridges are perpendicular to the lines drawn between the input points. To which two points each ridge
corresponds is also recorded:

>>> vor
array ([

.ridge_points

0, 31,

~ 0~ ~ SN N N~
VA IR U Y
N N SN S SN SN SN O~ O~

~

SO oY 00 9 NN O
~ 0~
w U1 W Ul > oYy O B Ol

o~

, dtype=int32)

~

This information, taken together, is enough to construct the full diagram.

We can plot it as follows. First, the points and the Voronoi vertices:

>>> plt
>>> plt
>>> plt

.plot (points([:, 0], points[:, 1], 'o")
.plot (vor.vertices[:, 0], vor.vertices[:, 11, '*'")
.xlim(-1, 3); plt.ylim(-1, 3)

Plotting the finite line segments goes as for the convex hull, but now we have to guard for the infinite edges:

>>> for simplex in vor.ridge_vertices:

simplex = np.asarray(simplex)
if np.all(simplex >= 0):
plt.plot (vor.vertices[simplex, 0], vor.vertices[simplex, 1], 'k-")

The ridges

extending to infinity require a bit more care:

—n)) *

>>> center = points.mean (axis=0)
>>> for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices):
simplex = np.asarray(simplex)
if np.any(simplex < 0):
i = simplex[simplex >= 0][0] # finite end Voronoi vertex
t = points[pointidx[1]] - points[pointidx[0]] # tangent
t =t / np.linalg.norm(t)
n = np.array ([-t[1], t[0]]) # normal
midpoint = points[pointidx].mean (axis=0)
far_point = vor.vertices[i] + np.sign(np.dot (midpoint - center, .
n * 100
plt.plot ([vor.vertices[i,0], far_point[0]],
[vor.vertices([i, 1], far_point[1]], 'k-—-")
.show ()

>>> plt

This plot can also be created using scipy.spatial.voronoi_plot_2d.

Voronoi diagrams can be used to create interesting generative art. Try playing with the settings of this mandala function
to create your own!

2.11. Spatial data structures and algorithms (scipy.spatial) 129

SciPy Reference Guide, Release 1.8.0

3 T T
1 1
1 1
1 1

2 A o 1 o 1 ()
1 1

1 o ()
1 1

0 A ® 1 o 1 []
1 1
1 1
1 1

_1 ! T ! T T

-1.0 -05 0.0 05 1.0 15 20 25 3.0

>>> import numpy as np
>>> from scipy import spatial
>>> import matplotlib.pyplot as plt

>>> def mandala(n_iter, n_points, radius):

"""Creates a mandala figure using Voronoi tesselations.

Parameters

n_iter : 1int
Number of iterations, i.e. how many times the equidistant points.

be generated.
n_points : int
Number of points to draw per iteration.
radius : scalar
The radial expansion factor.
Returns
fig matplotlib.Figure instance
Notes
.. This code is adapted from the work of Audrey Roy Greenfeld [1]_ and.
—~Carlos
. Focil-Espinosa [2]_, who created beautiful mandalas with Python code..
- That
code 1in turn was based on Antonio Sanchez Chinchén's R code [3]_.
References
[1] https://www.codemakesmehappy.com/2019/09/voronoi-mandalas.html
(continues on next page)
130 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

[2] https://github.com/CarlosFocil/mandalapy

[3] https://github.com/aschinchon/mandalas

fig = plt.figure(figsize=(10, 10))

ax = fig.add_subplot (111)
ax.set_axis_off ()

ax.set_aspect ('equal', adjustable='box'")

.. angles = np.linspace(0, 2*np.pi * (1 - 1/n_points), num=n_points) +.
—np.pi/2
Starting from a single center point, add points iteratively
xy = np.array([[0, 011)
for k in range(n_iter):
tl = np.array([])
t2 = np.array([])
.. # Add 'n_points' new points around each existing point in this.
—iteration
for i in range (xy.shapel0]):
tl = np.append(tl, xy[i, 0] + radius**k * np.cos(angles))
t2 = np.append(t2, xy[i, 1] + radius**k * np.sin(angles))

xy = np.column_stack ((tl, t2))

Create the Mandala figure via a Voronoi plot
spatial.voronoi_plot_2d(spatial.Voronoi (xy), ax=ax)

return fig

>>> # Modify the following parameters in order to get different figures
>>> n_iter = 3

>>> n_points = 6

>>> radius = 4

>>> fig = mandala(n_iter, n_points, radius)
>>> plt.show ()

2.12 Statistics (scipy.stats)

2.12.1 Introduction

In this tutorial, we discuss many, but certainly not all, features of scipy.stats. The intention here is to provide a
user with a working knowledge of this package. We refer to the reference manual for further details.

Note: This documentation is work in progress.

2.12. Statistics (scipy.stats) 131

SciPy Reference Guide, Release 1.8.0

132 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Discrete Statistical Distributions

Discrete random variables take on only a countable number of values. The commonly used distributions are included in
SciPy and described in this document. Each discrete distribution can take one extra integer parameter: L. The relationship
between the general distribution p and the standard distribution pg is

p(z)=po(z— L)

which allows for shifting of the input. When a distribution generator is initialized, the discrete distribution can either
specify the beginning and ending (integer) values a and b which must be such that

po(z)=0 z<aorx>b

in which case, it is assumed that the pdf function is specified on the integers a +mk < b where k is a non-negative integer
(0,1,2,...)and m is a positive integer multiplier. Alternatively, the two lists 2, and p (x},) can be provided directly in
which case a dictionary is set up internally to evaluate probabilities and generate random variates.

Probability Mass Function (PMF)

The probability mass function of a random variable X is defined as the probability that the random variable takes on a
particular value.

p(xr) = P[X = xg]
This is also sometimes called the probability density function, although technically

F@) = "px)d(x— k)
k

is the probability density function for a discrete distribution’ .

Cumulative Distribution Function (CDF)

The cumulative distribution function is

and is also useful to be able to compute. Note that

F (zg) — F (xp—1) = p(ag)

Survival Function
The survival function is just

S(x)=1—F(z)=P[X > k]
the probability that the random variable is strictly larger than % .

Percent Point Function (Inverse CDF)

The percent point function is the inverse of the cumulative distribution function and is

G(q)=F (g

for discrete distributions, this must be modified for cases where there is no x, such that F' (z)) = ¢. In these cases we
choose G (q) to be the smallest value z;, = G (q) for which F' () > ¢ . If ¢ = 0 then we define G (0) = a — 1. This
definition allows random variates to be defined in the same way as with continuous rv’s using the inverse cdf on a uniform
distribution to generate random variates.

! XXX: Unknown layout Plain Layout: Note that we will be using p to represent the probability mass function and a parameter (a XXX: probability).
The usage should be obvious from context.

2.12. Statistics (scipy.stats) 133

SciPy Reference Guide, Release 1.8.0

Inverse survival function

The inverse survival function is the inverse of the survival function
Z () :Sfl(a) =G(l-a)

and is thus the smallest non-negative integer k for which F' (k) > 1 — « or the smallest non-negative integer & for which
S (k) <a.

Hazard functions

If desired, the hazard function and the cumulative hazard function could be defined as

) = 20

C1-F (fﬁk)
and
H(z) = Z h(zy) = Z F(Jilk)_—FfEx(Z)k—l)
Moments

Non-central moments are defined using the PDF
Hon = BIX™) = al'p (z1).-
k

Central moments are computed similarly ;1 = pf

pm =E[(X =)™ = Y (e —)" p(xp)
k
= Sy () ey
k;) ())u 1

The mean is the first moment

the variance is the second central moment
2
po =B (X = | = Y ap (@) — .
Tk

Skewness is defined as

_ M3
N =375
Mo
while (Fisher) kurtosis is
Y2 = /1’7‘21 - 37
H2

so that a normal distribution has a kurtosis of zero.

134 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Moment generating function

The moment generating function is defined as
Mx (t) = E[eX] =) e™'p ()
Tk

Moments are found as the derivatives of the moment generating function evaluated at 0.

Fitting data

To fit data to a distribution, maximizing the likelihood function is common. Alternatively, some distributions have well-
known minimum variance unbiased estimators. These will be chosen by default, but the likelihood function will always
be available for minimizing.

If f; (k;0) is the PDF of a random-variable where 0 is a vector of parameters (e.g. L and S), then for a collection of
N independent samples from this distribution, the joint distribution the random vector k is

N
f(k;0) =] fi (ki 0).
i=1
The maximum likelihood estimate of the parameters 0 are the parameters which maximize this function with x fixed and
given by the data:
0 = arg max f(k;0)
= arg ngn Ik (0).
Where

N
— Y log f (ki; 0)

=1

—Nlog f (k;; 0)

I (0)

Standard notation for mean

We will use
1 X
y(x) = N;y(xi)

where IV should be clear from context.

Combinations

Note that
K=k -(k-1)-(k—2)-----1=T(k+1)

and has special cases of

&=
|

0 k<O

Ifn<00rk<00rk>nwedeﬁne(Z >:0

and

2.12. Statistics (scipy.stats) 135

SciPy Reference Guide, Release 1.8.0

Discrete Distributions in scipy.stats

Bernoulli Distribution

A Bernoulli random variable of parameter p takes one of only two values X = 0 or X = 1. The probability of success
(X =1)is p, and the probability of failure (X = 0) is 1 — p. It can be thought of as a binomial random variable with
n=1.The PMFisp (k) =0fork # 0,1 and

p(kip) =

0 z <0
F(x;p) = 1-p 0<z<1
p
p

1 1<z
0 0<g<1l—p
G(gp) = L1
—p=<q=sl
n
p2 = p(l—p)
1—-2p
Y3 =
p(l1—p)
_ 1—-6p(1—p)
Y4
p(l—p)

h[X] =plogp+ (1 —p)log(1—p)

Implementation: scipy.stats.bernoulli

Beta-Binomial Distribution

The beta-binomial distribution is a binomial distribution with a probability of success p that follows a beta distribution.
The probability mass function for betabinom, defined for 0 < k < n, is:

f(k;n,a,b) = (n) B(k+a,n —k+b)

k B(a,b)
forkin {0, 1,..., n}, where B(a,b) is the Beta function.

In the limiting case of a = b = 1, the beta-binomial distribution reduces to a discrete uniform distribution:

1

in,1,1) =
f(k7n7a) TL+1

In the limiting case of n = 1, the beta-binomial distribution reduces to a Bernoulli distribution with the shape parameter
p=a/(a+0):

a/(a+b) ifk=0

f(ki1,a,0) = {b/(a+b) if k=1

Implementation: scipy.stats.betabinom

136 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Binomial Distribution

A binomial random variable with parameters (n,p) can be described as the sum of n independent Bernoulli random
variables of parameter p;

Therefore, this random variable counts the number of successes in n independent trials of a random experiment where
the probability of success is p.

p(ksn,p) = (Z)pk(l—p)”kkE{O,l,...n},
F(rinp) = Z<Z>p’“<1p>”zl_pmtxJ,LxJH) 220

where the incomplete beta integral is

I, (a,b) = F(‘”b)) /Om =1 (1=)L .

T (a)T (b
Now
po= np
p2 = np(l—p)
y 1—-2p
1 — — —
np (1 —p)
_ 1-6p(1—p)
Yo = ———".
np (1 —p)

M) =[1-p(1—e)]"

Implementation: scipy.stats.binom

Boltzmann (truncated Planck) Distribution

1—e?
0 z <0
. _ 1—exp[—A(lz]|+1
F(x;N,A) = (=pEAletll o<z <N -1
1 z>N-—-1
1
G(g,N) = {—)\log[l—q(l—e_/\N)]—l-‘

2.12. Statistics (scipy.stats) 137

SciPy Reference Guide, Release 1.8.0

Define z = e~
_ z NzN
peo= 1—z 1—2N
z N2N

po = -

no= 3/2

z(l—|—4z—|—z2) (1_ZN>4 — N4N (1+4zN +22N)

Y2 =

[z (11—_z2) _ szN]
1—eNE=A) 1 =2

M) = 1—et=A 1—e MV

Implementation: scipy.stats.boltzmann

Planck (discrete exponential) Distribution

Named Planck because of its relationship to the black-body problem he solved.

p(k;A) = (1 — e_>‘) e M EAN>0
F(z;)) = 1—e MeFD gx >0
1

Gy = [-greli-a-1].
- 1
H=
T ey
A
vy = 2cosh <2>
72 = 4+2cosh())
1—e?
M(t) = 1 et—A
Ae A
h(X] = [—log (1—e™?)

Implementation: scipy.stats.planck

138 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Poisson Distribution

The Poisson random variable counts the number of successes in n independent Bernoulli trials in the limit as n — co and
p — 0 where the probability of success in each trial is p and np = A > 0 is a constant. It can be used to approximate the
Binomial random variable or in its own right to count the number of events that occur in the interval [0, ¢] for a process
satisfying certain “sparsity” constraints. The functions are:

)\k
p(k;\) = e_’\ﬁ k>0,
F(z;)) = ST CANE S H ~'d
(3 \) = ;e n!_F(LxJ—&—l)//\ ttle™"dt,
wo= A
e = A
_ 1
Moo= \ﬁ
1
Y2 = 3
M (t) =exp [A (e —1)].

Implementation: scipy.stats.poisson

Geometric Distribution

The geometric random variable with parameter p € (0, 1) can be defined as the number of trials required to obtain a
success where the probability of success on each trial is p . Thus,

plkip) = 1-p)'p k>1
(@p) = 1-(1-pt z>1
log (1 —g)
G(gp [
(@:p) log (1 —p)
1
po= -
p
1-p
'U/ =
2 p2
_ 2-p
Y= T
p? —6p+6
Y2
1-p
P
M) =
©) et =(1-p)

Implementation: scipy.stats.geom

2.12. Statistics (scipy.stats) 139

SciPy Reference Guide, Release 1.8.0

Negative Binomial Distribution

The negative binomial random variable with parameters n and p € (0, 1) can be defined as the number of extra inde-
pendent trials (beyond n) required to accumulate a total of n successes where the probability of a success on each trial
is p. Equivalently, this random variable is the number of failures encountered while accumulating n successes during
independent trials of an experiment that succeeds with probability p. Thus,

k+n-—1 n
pinn) = (FFPTH)ra-nt k=0
G2 t+n—1 n i
F(xn,p) = Y . pt(l=p) x>0
=0
= I,(n,|z]+1) x>0
I—p
po= n—
p
_ i
H2 2
vy -
1 =
n(1—p)
_ pPP+6(1-p)
LI

Recall that I}, (a, b) is the incomplete beta integral.

Implementation: scipy.stats.nbinom

Hypergeometric Distribution

The hypergeometric random variable with parameters (M, n, N) counts the number of “good “objects in a sample of
size N chosen without replacement from a population of M objects where n is the number of “good “objects in the total
population.

p(k;N,n, M) = <Z>(%:Z> N — (M —n) < k < min (n,N)

F(z;N,n, M) = Y

= Z) 7
~nN
="
~ naN(M —n)(M—N)
2 = M2 (M —1)
(M —2n) (M —2N) M—1
no= M—2 nN (M —m) (M —n)
B g (N,n, M)
Y2 =

nN (M —n) (M — 3) (M —2) (N — M)

140 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

where (definingm = M —n)
g(N,n, M) = m?®—m®+3m?n — 6m3n + m*n + 3mn?
—12m?n? + 8m3n? + n3 — 6mn® + 8m?n3
+mnt —n’ —6m3N + 6m*N + 18m?*nN
—6m3nN + 18mn?N — 24m*n* N — 6n>N
—6mn®*N + 6n*N + 6m?N? — 6m3N? — 24mnN?
+12m*nN? + 6n*N? + 12mn*N? — 6n° N2,

Implementation: scipy.stats.hypergeom

Fisher’s Noncentral Hypergeometric Distribution

A random variable has Fisher’s Noncentral Hypergeometric distribution with parameters
M eN,n € [0,M], N € [0, M],w >0,
if its probability mass function is given by
n\ (M—n x
w
pla; M, n, N,w) = M7
Po

for x € [z, z,], where ; = max(0, N — (M — n)), x, = min(N,n),

T n\ (M —n
Py = vyk
* Z(z/)(N—y)wy’

Y=z

and the binomial coefficients are

ny _ n!
k) kl(n—k)!
Other functions of this distribution are
1% - Pl 9
2
P P
2 = B Py) "’

References

» Agner Fog, “Biased Urn Theory”, https://cran.r-project.org/web/packages/BiasedUrn/vignettes/UrnTheory.pdf
 “Fisher’s noncentral hypergeometric distribution”, Wikipedia, https://en.wikipedia.org/wiki/Fisher’s_noncentral _hypergeometric_dis

Implementation: scipy.stats.nchypergeom_fisher

2.12. Statistics (scipy.stats) 141

https://cran.r-project.org/web/packages/BiasedUrn/vignettes/UrnTheory.pdf
https://en.wikipedia.org/wiki/Fisher's_noncentral_hypergeometric_distribution

SciPy Reference Guide, Release 1.8.0

Wallenius’ Noncentral Hypergeometric Distribution

A random variable has Wallenius’ Noncentral Hypergeometric distribution with parameters
MeN,nel0,M],N€[0,M],w>0,

if its probability mass function is given by

v = (M) (00 [y ()

for x € [z, z,], where ; = max(0, N — (M — n)), x, = min(N,n),
D=wn—-z)+(M—-n)—(N-u1)),

and the binomial coefficients are

PO

> 3

N
Il

=

k'(nfk)'

References

¢ Agner Fog, “Biased Urn Theory”, https://cran.r-project.org/web/packages/BiasedUrn/vignettes/UrnTheory.pdf
* “Wallenius’ noncentral hypergeometric distribution”, Wikipedia, https://en.wikipedia.org/wiki/Wallenius’_noncentral _hypergeometri

Implementation: scipy.stats.nchypergeom_wallenius

Negative Hypergeometric Distribution

Consider a box containing M balls: n red and M — n blue. We randomly sample balls from the box, one at a time and
without replacement, until we have picked r blue balls. nhypergeom is the distribution of the number of red balls k we

have picked.
k+r—1 M—-r—k
k n—=k
p(k;M,TL,T’) = M OSkSM7n7
(%)
L]
F(x; Myn,r) = Y p(kiM,n,r),
k=0
B rn
= M—n+D
B rn(M + 1) 1 T
2= M —n+D)(M-n+2) M-—n+1

for k € 0,1,2,...,n, where the binomial coefficients are defined as,

(1) = m

The cumulative distribution, survivor function, hazard function, cumulative hazard function, inverse distribution function,
moment generating function, and characteristic function on the support of & are mathematically intractable.

Implementation: scipy.stats.nhypergeom

142 Chapter 2. SciPy User Guide

https://cran.r-project.org/web/packages/BiasedUrn/vignettes/UrnTheory.pdf
https://en.wikipedia.org/wiki/Wallenius'_noncentral_hypergeometric_distribution

SciPy Reference Guide, Release 1.8.0

Zipf (Zeta) Distribution

A random variable has the zeta distribution (also called the zipf distribution) with parameter o > 1 if it’s probability
mass function is given by

where

I
B
I
NE
2=

1 1
F(x: _ _
wo= C—; a>2
2
by = ¢2Co : Gi 0> 3
0
(3¢8 — 3¢ G +2¢3
¥ = o > 4
' (260 — C12]3/2
vy = CaGd — 4¢36165 + 12¢a¢F¢o — 6¢ — 3(22&?.

(Ca2Co — C2)°

Li, (')
¢ (@)

where ¢; = ¢ (o — i) and Li,, (2) is the n'" polylogarithm function of z defined as

. — 2"
Li, (z) = Z =
k=1

M(t) =

=M™ 1) =

Implementation: scipy.stats.zipf

Zipfian Distribution

A random variable has the Zipfian distribution with parameters s > 0 and N € {1,2,3,... } if its probability mass
function is given by

p(k;s,N) = HNl’SkS ke{l,2,...,n—1,n}
where
|
Hstnzglg

2.12. Statistics (scipy.stats) 143

SciPy Reference Guide, Release 1.8.0

is the N'" generalized harmonic number of order s. Other functions of this distribution are

Hks
F(.T,S7N) = TM,
L= HN,s—l
HN,S ’
2
M _ HN,s—Q HN,s—l
9 = _
HN:S HIZV,S 7
Hy s—3 Hy s—1HNn s—2 H?\I‘s—l
Ax. 5 mg, V2HE,
o= 3 ,and
Hy,s—oHNs—HY ,_1\?
HY JHy o4 —4H Hn o 1Hn s 3 +6HN HY , (Hys 2 —3Hy
Y2 = 2
(HN,s—zHN,s - H?v,s_1)
References

o “Zipf’s Law”, Wikipedia, https://en.wikipedia.org/wiki/Zipf %27s_law

e Larry Leemis, “Zipf Distribution”, Univariate Distribution Relationships. http://www.math.wm.edu/~leemis/

chart/UDR/PDFs/Zipf.pdf

Implementation: scipy.stats.zipfian

Logarithmic (Log-Series, Series) Distribution

The logarithmic distribution with parameter p has a probability mass function with terms proportional to the Taylor series

expansion of log (1 — p)

ok
p(k;p) Foe(i=p) *2
Lzl & 1+|x)
1 d(p, 1,1+
F(zp) = 7721)7:1+P (p lz])
log (1 —p) = k log (1 —p)
where
=Y o
P (z,s,a) = 5
= (a+k)
is the Lerch Transcendent. Also define r = log (1 — p)
W P
(I-p)r
= plp+r]
(1-p)°r?
) 2p +3pr+ (1+p)7r°
L —
rp+r)V=pp+r)
y 6p° + 12p°r +p(dp+T)r? + (P +4p+ 1) 13
2 = = ’

p(p+r)?

144 Chapter 2. SciPy User Guide

https://en.wikipedia.org/wiki/Zipf%27s_law
http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Zipf.pdf
http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Zipf.pdf

SciPy Reference Guide, Release 1.8.0

1 0 etkpk
M@t = -
*) log (1 —p) 1; k
_ log (1 —pe')
log (1 —p)
Thus,
_ Lij_, (pe") Lii—y (p)

py = MM (t)

=0 log(1—p)|_y log(1—p)

Implementation: scipy.stats. logser

Discrete Uniform (randint) Distribution

The discrete uniform distribution with parameters (a, b) constructs a random variable that has an equal probability of being
any one of the integers in the half-open range [a,). If a is not given it is assumed to be zero and the only parameter is
b. Therefore,

1
k,a,b) = —— <k<b
p(k,a,b) T S
F (z;a,b) = ng__aa a<z<b
G(g;a,b) = [q(b—a)+a]
_ bta-—1
o= 2
 (b—a—-1)(b—a+1)
p2 = 12
o= 0
6 (b—a)’+1
T TR —a—1D0b_artl)
=
M t — tk
(t) b a];ae
B ebt _ eat
G—a) (e - 1)
Implementation: scipy.stats.randint
Discrete Laplacian Distribution
Defined over all integers for a > 0
p(k) = tanh (g) e~ alkl,
eallz]+1)
Fla) { - lal <0,
l— g lz]>0.

@Q
—
)
~

|

{ [Lloglg(e* +1)] 1] ¢ < =,
Loglt—g (1 +e)] g2 i,

2.12. Statistics (scipy.stats) 145

SciPy Reference Guide, Release 1.8.0

M) = tanh(%) i ethe=alkl

k=—o00

- o saen)
k=1 1

ot a) 67(t+a) et—a
- (5) T e we T T e

tanh (%) sinh a
cosha — cosht’

Thus,
iy =M™ (0) = [1+ (—1)"] Li_n (e7)

where Li_,, (2) is the polylogarithm function of order —n evaluated at z.

h[X] = —log (tanh (g)) + -2

sinh a

Implementation: scipy.stats.dlaplace

Yule-Simon Distribution

A Yule-Simon random variable with parameter o« > 0 can be represented as a mixture of exponential random variates.
To see this write W as an exponential random variate with rate p and a Geometric random variate K with probability
1 — exp(—W) then K marginally has a Yule-Simon distribution. The latent variable representation described above is
used for random variate generation.

k&) T (a+1)

S]
' kKD (B)T (a + 1)
F (ks) T T(kta+1)
fork=1,2,...
Now
po= ail
a2
P72
B (a—2)(a+1)°
no= a(a—3)

(+3) + (a® — 49a — 22)
a(a—4)(a—23)

Y2 =

for o« > 1 otherwise the mean is infinite and the variance does not exist. For the variance, o > 2 otherwise the variance
does not exist. Similarly, for the skewness and kurtosis to be finite, « > 3 and o > 4 respectively.

Implementation: scipy.stats.yulesimon

146 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Continuous Statistical Distributions

Overview

All distributions will have location (L) and Scale (S) parameters along with any shape parameters needed, the names for
the shape parameters will vary. Standard form for the distributions will be given where L = 0.0 and S = 1.0. The

nonstandard forms can be obtained for the various functions using (note U is a standard uniform random variate).

Function Name

Standard Function

Transformation

Cumulative Distribution Function F(z) F(x;L,8)=F ((l‘;“)

(CDF)

Probability Density Function (PDF) f(z)=F'(x) f(@;L,S)=%f (ugL))

Percent Point Function (PPF) G(q)=F (g G(q; L,S)=L+5SG(q)

Probability Sparsity Function (PSF) g9(q9) =G (q) g(¢;L,S) =59 (q)

Hazard Function (HF) ha () = 242 ha (25 L, S) = Lhg (“;L))

Cumulative Hazard Function (CHF) H, (x) = log H, (z;L,8) = H, (<”g“>

Survival Function (SF) S(x)=1-F(x) S(x;L,S)=S8 ((w;L)

Inverse Survival Function (ISF) Z(a)=85"1(a)= Z(a;L,S) =L+ SZ («)
G(1l-a)

Moment Generating Function (MGF) My (t) = E [¢"7] Mx (t) = el My (St)

Random Variates Y=G(U) X=L+5Y

(Differential) Entropy hY]=—[f(y)logf(y)dy | h[X]=h[Y]+1logS

(Non-central) Moments w, =E[Y" EX"] =

L" Ziv—o(0) (3)" i

Central Moments

E [(X — ,uX)n] = 5" n

mean (mode, median), var Hy fh2 L+ Sp, S?po
skewness "= (H5)33/2 "
kurtosis V2 =g ;Z 4)2 3 V2

Moments

Non-central moments are defined using the PDF

o= [i@

— 00

Note, that these can always be computed using the PPF. Substitute 2 = G (¢) in the above equation and get

1
Iy, = / G" (q)dq
0

which may be easier to compute numerically. Note that ¢ = F' () so that dg = f (x) dz. Central moments are computed

similarly ;1 = pj

- [e

- / (G (q) — w)" dg

~ i:(L) (=)" wiy

k=0

2.12. Statistics (scipy.stats)

147

SciPy Reference Guide, Release 1.8.0

In particular

ps = = 3puph + 2
_ / 3
= 3 — 3ppe — p

pa =y —Apps 4 67 ph — 3pt
=y —Apps — 6p” g — pt

Skewness is defined as

m=vp = 7{52

Ko
while (Fisher) kurtosis is
Y2 = % -3,
125

so that a normal distribution has a kurtosis of zero.

Median and mode

The median, m,, is defined as the point at which half of the density is on one side and half on the other. In other words,

F (m,) = % so that
1
my, =G (2> .

2
In addition, the mode, m , is defined as the value for which the probability density function reaches it’s peak

mgq = argmax f ().
T

Fitting data

To fit data to a distribution, maximizing the likelihood function is common. Alternatively, some distributions have well-
known minimum variance unbiased estimators. These will be chosen by default, but the likelihood function will always
be available for minimizing.

If f (x;0) is the PDF of a random-variable where 6 is a vector of parameters (e.g. L and S'), then for a collection of N
independent samples from this distribution, the joint distribution the random vector x is

f(x;e>=Hf(a:i;0>.

The maximum likelihood estimate of the parameters 0 are the parameters which maximize this function with x fixed and
given by the data:

Ocs = argmax f(x;0)

= arg mein Ix ().

Where

N
Ix(0) = leogf(xi%e)

= —Nlog f (z0)

148 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Note that if @ includes only shape parameters, the location and scale-parameters can be fit by replacing z; with
(x; — L) /S in the log-likelihood function adding N log S and minimizing, thus

a x; — L
NlogS—Zlogf(ZS ;0)

i=1
NlogS#—l%(O)

Ix (L, S;0)

If desired, sample estimates for L and .S (not necessarily maximum likelihood estimates) can be obtained from samples
estimates of the mean and variance using

§ = |
2
L = ,&—Su

where 4 and pio are assumed known as the mean and variance of the untransformed distribution (when L = 0 and
S =1)and

R 1 _
o= NE.%ZZX
N
L 1 2 N 2
fio = N—1;(x’_”) =5 X%

Standard notation for mean

We will use
1 &
y(x) = Nzy(xi)
i=1
where N should be clear from context as the number of samples xz;

References

¢ Documentation for ranlib, rv2, cdflib

¢ Eric Weisstein’s world of mathematics http://mathworld.wolfram.com/, http://mathworld.wolfram.com/topics/
StatisticalDistributions.html

e Documentation to Regress+ by Michael McLaughlin item Engineering and Statistics Handbook (NIST), https:
/Iwww itl.nist.gov/div898/handbook/

* Documentation for DATAPLOT from NIST, https://www.itl.nist.gov/div898/software/dataplot/distribu.htm

¢ Norman Johnson, Samuel Kotz, and N. Balakrishnan Continuous Univariate Distributions, second edition, Volumes
Iand II, Wiley & Sons, 1994.

In the tutorials several special functions appear repeatedly and are listed here.

2.12. Statistics (scipy.stats) 149

http://mathworld.wolfram.com/
http://mathworld.wolfram.com/topics/StatisticalDistributions.html
http://mathworld.wolfram.com/topics/StatisticalDistributions.html
https://www.itl.nist.gov/div898/handbook/
https://www.itl.nist.gov/div898/handbook/
https://www.itl.nist.gov/div898/software/dataplot/distribu.htm

SciPy Reference Guide, Release 1.8.0

Symbol Description Definition

v (s,) lower incomplete Gamma function Syt e at

T (s,x) upper incomplete Gamma function [t e *tdt

B (z;a,b) incomplete Beta function Jo t 7 (6 tat
I(z;a,b) regularized incomplete Beta function FI;E;;—IL_EJIJ) fo e 1 Htat
¢ (x) PDF for normal distribution %ﬂe‘”‘ /2

D (z) CDF for normal distribution / foo o (t)dt =1 + Lerf (%)
¥ (2) digamma function log (T (2))

Ui (2) polygamma function A log (T (2))

I, (y) modified Bessel function of the first kind

Ei(z) exponential integral -7 < dt

¢ (n) Riemann zeta function D1 kn

¢(n,z) Hurwitz zeta function 2 k=0 (k+z)n

pFy(a, ..., ap;b1,...,by;2) | Hypergeometric function Dm0 W iTr:

Continuous Distributions in scipy.stats
Alpha Distribution

One shape parameter o« > 0 (parameter 8 in DATAPLOT is a scale-parameter). The support for the standard form is
x> 0.

1 1 1\?
flaie) = x2¢(a)mexp<_2 (a_:v>>
o—1
F(z;0) = W
Glgo) = [a—@ 7 (q@(a))]

o gt [G (e 1) e

N - 1
Ix (@) = Nlog {q) () \/277} + 2Nlogx + Eaz —ax~1+ §x—2

No moments?

Implementation: scipy.stats.alpha

Anglit Distribution

Defined over = € [—7F, 5].

f(x) = sin <2x +) = cos (2x)
F(z) = sin ()
G(q) = arcsin(\/q)— %

150 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

p o= 0
_ o 1
T
1 = 0
7t — 96
S
Y2 (71'2—8)2
h[(X] = 1-log2

0.30685281944005469058

™

M) = /Z cos (2z) e**dx

™

4 cosh (%t)
244
Ix () = —Nlog [cos (2x)]

Implementation: scipy.stats.anglit

Arcsine Distribution

Defined over z € [0,1]. To get the definition presented in Johnson, Kotz, and Balakrishnan, substitute z = “T“ i.e.

L=—-1land S =2.
1

mx (1l —x)
F(x) = 2 arcsin (\/JE)
G(g) = sin’ (gq)

e’} k—1 k
2r+11\ 1t
=13 (I5753) &

k=1 \r=0
1t
W, = f/ x"_1/2(1—x)71/2dm
T Jo
1 /1 1\ (2n-1)
= — B = — =
T (2””2) 9
_ 1
=3
1
pH2 = g
m o= 0
3
Yo = —5

h[X] = log(%) ~ —0.24156447527049044468

N N
Ix () = Nlogm+ Elogx + ?1og (1-x)

2.12. Statistics (scipy.stats) 151

SciPy Reference Guide, Release 1.8.0

References

¢ Norman Johnson, Samuel Kotz, and N. Balakrishnan, Continuous Univariate Distributions, second edition, Vol-

umes I and II, Wiley & Sons, 1994.

* “Arcsine Distribution”, Wikipedia, https://en.wikipedia.org/wiki/Arcsine_distribution

Implementation: scipy.stats.arcsine

Beta Distribution

There are two shape parameters a, b > 0 and the support is z € [0, 1].

f(x;a,0) =

a

I'(a+b)

)T ()

%1 (1-— Q:)b_l

I'(
F(r;a,b) = /Of(y;a,b)dy=1(x;a,b)

G(ga,0) = I7'(ga,b)
_ (@I (b) . .
M(t) — mlF] (a,a+b,t)
B a
B= a+b
~ ab(a+b+1)
" (a+b)
_ b—a la+b+1
mo= a+b+2 ab

6 (a® 4 a® (1 —2b) + b* (b+ 1) — 2ab (b + 2))

72 =

(a -
(a+b-2)

mqg =

ab(a+b+2)(a+b+3)

)

a+b+#2

where I (x; a, b) is the regularized incomplete Beta function. f (z;a,1) is also called the Power-function distribution.

Ix (a,b) = —NlogT'(a +b)+ NlogI'(a) + NlogI' (b) — N (a —1)logx — N (b—1)log (1 — x)

Implementation: scipy.stats.beta

Beta Prime Distribution

There are two shape parameters a, b > 0 and the support is z € [0, 00). Note the CDF evaluation uses Eq. 3.194.1 on

pg. 313 of Gradshteyn & Ryzhik (sixth edition).

_ _ I'(a+p)
f(xaavﬂ) - F(O{)F(ﬁ)

, _ I(a+p)
Pl = r@re

(1 + x)fa*ﬁ

G(ga,8) = F'(z;0,8)

(a)T'(B)

B CEDN

. L(nta)(B=n) _ (o),
u =

o

%oy (a+ B, 051 + a; —x)

B>n
otherwise

152

Chapter 2. SciPy User Guide

https://en.wikipedia.org/wiki/Arcsine_distribution

SciPy Reference Guide, Release 1.8.0

Therefore,
no= 661 forg > 1
ala+1) a?
o = — for 5 > 2
B-2)(B-1) (B-1)
a(a+1)(a+2) _3 R
(B=3(B—2)(B—1) M2 — [
Moo= (8-3)(B-2)(B :1))) for 3> 3
/2
Ho
v = -3
Ha

— ala+1)(a+2)(a+3) , \
S (ﬂ*4)(5*3)(ﬁ72)(ﬂf1)_4'“'“3_6,“M2—,u for § >4

Implementation: scipy.stats.betaprime

Bradford Distribution

There is one shape parameter, ¢ > 0, and the support is € [0, 1].

Letk = log(l1+¢)
Then
Floo) = log(lk—i—ca:)
G(qc) — %
M(t) = %e—t/c [Ei (t+z) — FEi (Z)}
c—k
o= ck
= (c+222k/;€2—2c
CV2(12¢2 — 9ke (¢ +2) + 2K (¢ (c 4 3) + 3))
T T ek —2) 1 2k) (Be(k —2) + 6k)
A (k—3) (k(3k — 16) + 24) + 12kc® (k — 4) (k — 3) + 6¢k? (3k — 14) + 12k
o 3¢ (c(k—2) + 2k)
mqg = 0
m, = Vi4+c—1
h[X] = ilog(1+c)—1og<1mg(f+c)>

where Ei (z) is the exponential integral function.

Implementation: scipy.stats.bradford

2.12. Statistics (scipy.stats) 153

SciPy Reference Guide, Release 1.8.0

Burr Distribution

There are two shape parameters ¢, d > 0 and the support is = € [0, c0).

(-39

Leth = ruﬂ(ki)r(i+@

cd
f(z;e,d) = 2L (1 1 eyt
F(zje,d) = (1 +x_c)7d
G(gc,d) = (q*”d - 1)_1/0
_ Ta-9r(E+4d
o I (d)
B k
e

_ 1 3
mo= m[” (1

o

Y2 = -3+ {

3
—4I‘2 (e
C
d—1\"¢
mg = (C) if ed > 1, otherwise 0
c+1
My = (21/d—1)_1/c

Implementation: scipy.stats.burr

e (o) rman (- (24
wiae{1-2)e (o) (L)
e e (et
I

(2o (v (24)

)]

o(teg

154

Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Burr12 Distribution

There are two shape parameters ¢,d > 0 and the support is € [0, 00). The Burrl2 distribution is also known as the

Singh-Maddala distribution.

() xcfl
f(z;e,d) = cd———
(1+xc)d+1
F(zie,d) = 1—(1+2%¢
17d —1/c
Glged = (1-g-1)
S(zie,d) = (1+a%™
1 1
uw = dB (d—,l—f—)
¢ c
P dB(d—iHﬁ)
& &
= c-1)'" if > 1, otherwise
md = cd+1 e W
m, = (21/d_1)—1/c
where B(a,b) = 1}((253) is the Beta function.
Implementation: scipy.stats.burrl2
Cauchy Distribution
The support is z € R.
1
f(.’l?) - 7T(1+1’2)
1 1
F(z) = §+;tan_lw
G(g) = tan (ﬂ'q - g)
mg = 0
m, = 0

No finite moments. This is the ¢ distribution with one degree of freedom.

h[X] = log(4m)
2.5310242469692907930.

Implementation: scipy.stats.cauchy

2.12. Statistics (scipy.stats)

155

SciPy Reference Guide, Release 1.8.0

Skewed Cauchy Distribution

This distribution is a generalization of the Cauchy distribution. It has a single shape parameter —1 < a < 1 that skews
the distribution. The special case a = 0 yields the Cauchy distribution.

Functions

1
f(z,a) — . =0
m ((a:v+1)2 + 1)
1
= , x<0.
((aw+1)2+)
1-— 1
F(z,a) = a—i— +aarctan 33 , x>0;
2 T 1+4+a
l—a 1-—a T
= + arctan , <0
2 s 1—a

The mean, variance, skewness, and kurtosis are all undefined.

References

e “Skewed generalized ¢ distribution”, Wikipedia https://en.wikipedia.org/wiki/Skewed_generalized_t_
distribution#Skewed_Cauchy_distribution

Implementation: scipy.stats.skewcauchy

156 Chapter 2. SciPy User Guide

https://en.wikipedia.org/wiki/Skewed_generalized_t_distribution#Skewed_Cauchy_distribution
https://en.wikipedia.org/wiki/Skewed_generalized_t_distribution#Skewed_Cauchy_distribution

SciPy Reference Guide, Release 1.8.0

Chi Distribution

Generated by taking the (positive) square-root of chi-squared variates. The one shape parameter is v, a positive integer,

the degrees of freedom. The support is > 0.

v—1,—x%/2
fav) =
~y y 2
F(x;v) = <1_‘2(U)2)
2

NCY
r'(3)
M2 = V—M2
203 + (1 —2v)
noo= 3/2
Ho
2v (1 —v) —6ut +4p? (2v — 1)
Y2 = P}

mg = Vv—1 v>1

e \/27—1 (;,;n;))

Implementation: scipy.stats.chi

Chi-squared Distribution

This is the gamma distribution with L = 0.0 and S = 2.0 and o = v/2 where v is called the degrees of freedom. If
Zy ... Z, are all standard normal distributions, then W =, Z? has (standard) chi-square distribution with v degrees

of freedom.
The standard form (most often used in standard form only) has support x >
1 xr\v/2—1 _
fwo) = e (3) e
v(5:3)
F(za) = z
I'(%)
G (a: — 9471 (Z T v)
(¢; @) 7 (3t ()

0.

x/2

2.12. Statistics (scipy.stats)

157

SciPy Reference Guide, Release 1.8.0

n o= v
to = 2v
22
7= NG
12
Y2 = —
v
v
mqg = 5 -1

Implementation: scipy.stats.chi?2

Cosine Distribution

Approximation to the normal distribution. The support is [—, 7].

flx) = %(14—008.%‘)
F(x) = %(w—&—x—ksinx)
G(qg) = F'(q)
_ sinh(nt)
M) = mt (1 + t2)
w=mg=my = 0
2
Mo = ? -2
1 = 0
=6 (x* —90)
L
h[(X] = log(4r)—1

1.5310242469692907930.

Implementation: scipy.stats.cosine

Double Gamma Distribution

The double gamma is the signed version of the Gamma distribution. For o > 0 :

1 - —|x
R L
1 (o, |z])
F(z;0) = {f_%l;(ﬁc)n r=0
§+’Y2F&a) x>0
—1 1
. _ -7 (0, 2¢ - 1T () q<3
Glgia) = { v 2g—1T(a) g¢>1

1 N 1
2(1 -1 2(1+t)"

M (t) =

158 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

n=1my 0
pe = ala+1)
1 = 0
(a+2)(a+3)
7 ala+1) 3
mg = NA

Implementation: scipy.stats.dgamma

Double Weibull Distribution

This is a signed form of the Weibull distribution. There is one shape parameter ¢ > 0. Support is z € R.

C c— c
flze) = 5lal texp (= |2[%)
3 exp (— |2[°) r<0
. — 2 —
Fzie) = { 12 Lep(—|ef) #>0
—log/® (L g<1
Glgc) = el 5 .
log (2q—1 2
, _Jr(1+2) neven
Hn = =10 n odd
my,=p = 0
2
p2 = F(C+)
C
m =0
I(1+4%)
Y2 = 2y
I2 (14 2)
mg = NA bimodal

Implementation: scipy.stats.dweibull

Erlang Distribution

This is just the Gamma distribution with shape parameter o = n an integer.

Implementation: scipy.stats.erlang

Exponential Distribution

This is a special case of the Gamma (and Erlang) distributions with shape parameter (o = 1) and the same location and

scale parameters. The standard form is therefore (z > 0)

fl@) = e”
F(z) = v(1l,z)=1-¢""
G(qg) = —log(l-gq)

Hrn = 1!

2.12. Statistics (scipy.stats)

159

SciPy Reference Guide, Release 1.8.0

=
)
I

2 2
[
(I

o o N Rk o

Implementation: scipy.stats.expon

Exponentiated Weibull Distribution

Two positive shape parameters a, ¢ > 0, and the support is = € [0, c0).

f(za,¢) = acll —exp(—z)]* " exp (—z¢) 2!
F(z;a,¢) = [1—exp(—z)]"
G(ga,c) = [— log (1 - ql/a)} Ve

Implementation: scipy.stats.exponweib

Exponential Power Distribution

One positive shape parameter b. The support is z > 0.

f (557 b) = ebl‘bil exp (.Tb _ emb)
F(x;b) = 1—exp (1—exb)
G(g;b) = log(1—log(1—q)""

Implementation: scipy.stats.exponpow

Fatigue Life (Birnbaum-Saunders) Distribution

This distribution’s pdf is the average of the inverse-Gaussian (p = 1) and reciprocal inverse-Gaussian pdf (u = 1) . We
follow the notation of JKB here with 5 = S. There is one shape parameter ¢ > 0, and the support is z > 0.

flzie) = Qi/%mp <—($2;C?2>
e = o(}(a5)

cwa = e wrEewr)

160 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

2

= —+41
M 2+
5
Ho = 2 (402+1>
4ev/11c¢?2 +6
7=

(5c2 + 4)*/
6c? (93¢% + 41)

T T et 4y

Implementation: scipy.stats. fatiguelife
Fisk (Log Logistic) Distribution

Special case of the Burr distribution with d = 1. There is are one shape parameter ¢ > 0 and the support is = € [0, c0).

1
Letk = F(1—2)I‘(2+1)—I‘2<1_>F2<1+1)
C C C C

et
f(gc,qd) - (1—|—£UC)2
F(x;e,d) = (1—|—x_c)_1
Glged = (¢ —1)7"°
(=2)r ()
p o= T(1-2)r(=+1
c c
p2 = k

N RGO
(3o
2= e () ()
(e erfe- et
(8- 2]

. 1/c
myg = (C) if ¢ > 1, otherwise 0
c+1
m, = 1
h(X] = 2-loge

Implementation: scipy.stats.fisk

2.12. Statistics (scipy.stats) 161

SciPy Reference Guide, Release 1.8.0

Folded Cauchy Distribution

This formula can be expressed in terms of the standard formulas for the Cauchy distribution (call the cdf C' (x) and the
pdf d(x)). If Y is cauchy then |Y| is folded cauchy. There is one shape parameter c and the support is 2 > 0.

1 1
Fe) = — :
7r(1+(x—c)) 7r(1—|—(x+c)>
1, 1,
F(zr;e) = —tan " (x—c)+ —tan"" (x +¢)
7r 7r
Glge) = F ' (go)
No moments
Implementation: scipy.stats.foldcauchy
Folded Normal Distribution
If Z is Normal with mean L and ¢ = S, then |Z| is a folded normal with shape parameter ¢ = |L| /S , location

parameter 0 and scale parameter .S . This is a special case of the non-central chi distribution with one- degree of freedom
and non-centrality parameter c¢2. Note that ¢ > 0 . The standard form of the folded normal is

flx;e) = \/zcosh (cx) exp (— 2 ;_CQ>
Flai) = 2@-o)-(-z-0)=(c—0)+®(a+c)-1
G(gc) = F'(gec)
M(t) = exp (; (t— 20)) (1 + cht)
e

[
p = exp| -3
/2
po= \/z-p+ck
™

pe = A +1—p?
\/gp3 (4 -5 (2¢% + 1)) + 2ck (6p* + 3cpkv/2r + me (k2 — 1))
"= 3/2
T
c4+662+3+6(02+1)u2—3,u474p,u(\/g(c2+2)Jr%(02+3))
Y2 = 2

Ha

Implementation: scipy.stats.foldnorm

162 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Fratio (or F) Distribution

The distribution of (X7 /X5) (va/v1) if X7 is chi-squared with v; degrees of freedom and X5 is chi-squared with vy
degrees of freedom. The support is > 0.

2 2 _
ng/ 1/1”1/ pvi/2=1

f(x;ylvle) =
(vs + 1) T2 B (4, 2)
vx V1 V9
F(z; = (= an
(x,'Ul,’UQ) (VQ"‘VL’E’ 2a 2)

-1
. B V2 o
G(gvi,ve) = <I—1 (g;v1/2,12/2) ”2)

wo= v2 for v > 2
V2—2

202 -2
pa = vy (1 +2V2) for vy > 4
141 (1/2 — 2) (1/2 — 4)

2(21/14’1/272) 2(1/274)

= for v, > 6
m vy — 6 v (v +va —2) 2
3(8+ (vg —6)7%)
Yo = 9 — 16 for vy > 8

where I (x;a,b) = I, (a,b) is the regularized incomplete Beta function.

Implementation: scipy.stats.

Gamma Distribution

The standard form for the gamma distribution is (o > 0) valid for x > 0.

1
’ I'(e)
Glga) = 77 (a,ql(a)
where - is the lower incomplete gamma function, 7 (s, z) = foa: ts~le~tdt.
1
M (t) =
o o
2 = o
2
"= ﬁ
6
Y2 = —
o
mg = a—1

where

Implementation: scipy.stats.gamma

2.12. Statistics (scipy.stats) 163

SciPy Reference Guide, Release 1.8.0

Generalized Logistic Distribution

Has been used in the analysis of extreme values. There is one shape parameter ¢ > 0. The supportis x € R.

pe) = cexp (—x)
f()) [1+exp (_x)]chl
1
P = o ar
G(g;c) = —log (q*”c - 1)

M (t) = 1it2F1(1+c,1—t;2—t;—1)

po= v+o(c)
2
™
M2 = €+1/11 (C)
_ a0 +2¢(3)
Y1 = — 372
Ha
(3 +4s0)
Y2 = T
25
mgq = logc
My = —log(21/c—1)
Note that the polygamma function is
dn+1
Ya(s) = Sorlogl(2)

= D"l
Z Z+k n+1

= (- n!C (n +1,2)

where ¢ (k,) is a generalization of the Riemann zeta function called the Hurwitz zeta function. Note that ¢ (n) =
¢(n,1).

Implementation: scipy.stats.genlogistic

Generalized Pareto Distribution

There is one shape parameter ¢ % 0. The supportis x > 0if ¢ > 0,and 0 < = < ﬁ if ¢ is negative.

flwie) = (14ea)™ e
1
F(l’,C) - (].+CIZ?)1/C

164 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

/_(_1)n ~ (n (_1)k .
== Z(k‘)l—ck ifen <1

k=0
. 1
wy = T—< c<1
2
2= T 290-0 ‘T2
, 6 1
s = T-od-200-39 “°3
, 24 1
Moo= Ao -200-30(1 49 1
Thus,
no=
po = ph—
fy — 3ppg — p°
o= T3
Ho
ol — Apps — 6ppg — pt
T2 = 5 -3

H3
hX]=14¢ ¢>0

Implementation: scipy.stats.genpareto

Generalized Exponential Distribution

Three positive shape parameters a, b, c > 0 with support z > 0.

f(z;a,b,¢) = (a +b (1 — e_cx)) exp (ax —bx + g (1 — e_cx))
F(z;a,b,¢) = 1—exp (ax —bx + g (1- e—cw))
G(q;a,b,c) = F~!

Implementation: scipy.stats.genexpon

Generalized Extreme Value Distribution

Extreme value distributions with one shape parameter c.

If ¢ > 0, the support is —co < < 1/c. If ¢ < 0, the support is % <z < o0.

flz;e) = exp (_ (1— Cm)l/c) (1— Cm>1/c—1
F (fE, C) = exp (_ (1 _ Cl’)l/c>
Glge) = % (1 - (—logq)°)

’ 1 - (n k .
= — —1)"T'(ck+1 f -1
o= 2 (3) ok i

2.12. Statistics (scipy.stats) 165

SciPy Reference Guide, Release 1.8.0

So,
, 1
uy = E(l—F(lJrc)) c>—1
1 1
R 2(172F(1+c)+P(1+20)) c>—3
1 1
Wy = 0—3(1—3F(1+c)+31“(1+26)—1"(1+36)) c>—3
1 1
Wy = 0—4(1—41"(1+c)+61"(1+2c)—4F(1+3c)+F(1+4c)) ¢>—

For ¢ = 0 the distribution is the same as the (left-skewed) Gumbel distribution, and the support is R.

f(z;0) = exp(—e)e "

F(2;0) = exp(—e ™)
G(q;0) = —log(—loggq)
po= v=—vo(1)

7'(2

H2 = 6

w o= 28
12

Y2 = g

Implementation: scipy.stats.genextreme

Generalized Gamma Distribution

A general probability form that reduces to many common distributions. There are two shape parameters a > 0 and ¢ # 0.
The support is x > 0.

ca—1
I R
y(a,z%)
et >0
Flrae - { .
1-— () c<0
~1(q,T (a) q)*¢ c>0
G(q;aac) = _3/ (()Q) 1/c
7 (@, (a)(1—q)"" ¢<0

166 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

where 7 is the lower incomplete gamma function, 7 (s, z) = [t*~'e~'dt.

,_ Fla+?)
Hn - F(CL)
_ T(e+g)
S (O
F(‘H'%) 2
w2 = W*ﬂ
_ D(a+32)/T(a) = 3ups — 1i°
r}/l - 3/2
Ho
_ T(a+2) /T (a) —4pps — 6% po —
Y2 = -3

13

(ac -1) 1e
mq
c
Special cases are Weibull (@ = 1), half-normal (¢ = 1/2, ¢ = 2) and ordinary gamma distributions ¢ = 1. If ¢ = —1
then it is the inverted gamma distribution.

1
hiX]=a—-a¥(a)+ E\I/(a) +1logT (a) — log|c|.
Implementation: scipy.stats.gengamma
Generalized Half-Logistic Distribution

One shape parameter ¢ > 0 and support x € [0,1/c].

Q(Ifcx)%fl
flze) = 5

(1 +(1- cac)l/c>

—(1—cx)"*
Floeg = ‘=(dzc)’

1+ (1—ca)/e
swo =3[(557]

h[X] = 2—(2¢+1)log2.

Implementation: scipy.stats.genhalflogistic

Generalized Hyperbolic Distribution

The Generalized Hyperbolic Distribution is defined as the normal variance-mean mixture with Generalized Inverse Gaus-
sian distribution as the mixing distribution. The “hyperbolic” characterization refers to the fact that the shape of the
log-probability distribution can be described as a hyperbola. Hyperbolic distributions are sometime referred to as semi-
fat tailed because their probability density decrease slower than “sub-hyperbolic” distributions (e.g. normal distribution,
whose log-probability decreases quadratically), but faster than other “extreme value” distributions (e.g. pareto distribu-
tion, whose log-probability decreases logarithmically).

2.12. Statistics (scipy.stats) 167

SciPy Reference Guide, Release 1.8.0

Functions

Different parameterizations exist in the literature; SciPy implements the “4th parametrization” in Prause (1999).

f(z,p,a,b) = (a® — b2/ o o Ep-12(avl+a?)
D, @, map_o_st(m) (\/1+x2)1/2*1’

for:
* ,p € (—00;00)
e b <aifp>0
o b <aifp<0
. K,

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and

scale parameters. Specifically, f(z, p, a, b, loc, scale) is identically equivalent to ﬁ fly,p,a,b)withy = Sc}ﬂe (z —1loc).

(.) denotes the modified Bessel function of the second kind and order p (scipy.special. kn)

This parameterization derives from the original (\, o, 8, d, 1) parameterization in Barndorff (1978) by setting:

.)\:p

ca=t=4
e g=0b_28
B=5=5
e § = scale

e 1 = location

Random variates for the scipy.stats.genhyperbolic can be efficiently sampled from the above-mentioned

normal variance-mean mixture where scipy.stats.geninvgauss is parametrized as GIG (p = pb =
\/é2 — 2, loc = location, scale = \/0;_7) so that: GH (p, &, B) = 3 - GIG + VGIG - N(0,1)

The “generalized” characterization suggests the fact that this distribution is a superclass of several other probability dis-
tribution, for instance:
e f(p = —v/2,a = 0,b = 0,loc = 0,scale = /v) has a Student’s t-distribution (scipy.stats.t) with v
degrees of freedom.

s flp=1l,a=a&,b= B, loc = p, scale = d) has a Hyperbolic Distribution.

s flp=-1/2,a=a,b= B,loc = i, scale = ¢) has a Normal Inverse Gaussian Distribution (scipy. stats.

norminvgauss).

e flp=1,a=20,b=0,loc = p,scale =) has a Laplace Distribution (scipy.stats. laplace)ford — 0

Examples

It is useful to understand how the parameters affect the shape of the distribution. While it is fairly straightforward to
interpret the meaning of b as the skewness, understanding the difference between a and p is not as obvious, as both affect
the kurtosis of the distribution. @ can be interpreted as the speed of the decay of the probability density (where a > 1
the asymptotic decay is faster than log. and vice versa) or - equivalently - as the slope of the log-probability hyperbola
asymptote (where a > 1 decay is faster than |1| and vice versa). p can be seen as the width of the shoulders of the
probability density distribution (where p < 1 results in narrow shoulders and vice versa) or - equivalently - as the shape
of the log-probability hyperbola, which is convex for p < 1 and concave otherwise.

168 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

import numpy as np
from matplotlib import pyplot as plt
from scipy import stats

e, a, b, loc, scale =1, 1, 0, 0, 1
x = np.linspace (=10, 10, 100)

plot GH for different values of p
plt.figure (0)

plt.title("Generalized Hyperbolic | -10 < p < 10")
plt.plot (x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),

label = 'GH(p=1, a=1, b=0, loc=0, scale=1)")
plt.plot (x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),

color = 'red', alpha = 0.5, label='GH(p>1, a=1, b=0, loc=0, scale=1)")
[plt.plot (x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),

color = 'red', alpha = 0.1) for p in np.linspace(l, 10, 10)]
plt.plot (x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),

color = 'blue', alpha = 0.5, label='GH(p<l, a=1, b=0, loc=0, scale=1)

on)

[plt.plot (x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),

color = 'blue', alpha = 0.1) for p in np.linspace(-10, 1, 10)]
plt.plot(x, stats.norm.pdf(x, loc, scale), label = 'N(loc=0, scale=1)")
plt.plot(x, stats.laplace.pdf(x, loc, scale), label = 'Laplace(loc=0, scale=1)

]
")
plt.plot(x, stats.pareto.pdf(x+1l, 1, loc, scale), label = 'Pareto(a=1l, loc=0,.

—~scale=1)")

plt.ylim(le-15, 1le2)
plt.yscale('log')

plt.legend (bbox_to_anchor=(1.1, 1))
plt.subplots_adjust (right=0.5)

plot GH for different values of a

plt.figure (1)

plt.title("Generalized Hyperbolic | 0 < a < 10")

plt.plot (x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),

label = '"GH(p=1, a=1, b=0, loc=0, scale=1)")
plt.plot (x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),
color = 'blue', alpha = 0.5, label='GH(p=1, a>1, b=0, loc=0, scale=1)

")

[plt.plot (x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),

color = 'blue', alpha = 0.1) for a in np.linspace(l, 10, 10)]
plt.plot (x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),
color = 'red', alpha = 0.5, label='GH(p=1, 0<a<l, b=0, loc=0, scale=1)

—")

[plt.plot (x, stats.genhyperbolic.pdf(x, p, a, b, loc, scale),

color = 'red', alpha = 0.1) for a in np.linspace(0, 1, 10)]
plt.plot(x, stats.norm.pdf(x, loc, scale), label = 'N(loc=0, scale=1)")
plt.plot (x, stats.laplace.pdf(x, loc, scale), label = 'Laplace(loc=0, scale=1)
~")
plt.plot (x, stats.pareto.pdf(x+1l, 1, loc, scale), label = 'Pareto(a=1, loc=0,.

—scale=1)")
plt.ylim(le-15, 1le2)
plt.yscale('log')

(continues on next page)

2.12. Statistics (scipy.stats) 169

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

plt.legend (bbox_to_anchor=(1.1, 1))
plt.subplots_adjust (right=0.5)

plt.show ()

References

¢ Normal Variance-Mean Mixture https://en.wikipedia.org/wiki/Normal_variance-mean_mixture
* Generalized Hyperbolic Distribution https://en.wikipedia.org/wiki/Generalised_hyperbolic_distribution

* O. Barndorff-Nielsen, “Hyperbolic Distributions and Distributions on Hyperbolae”, Scandinavian Journal of Statis-
tics, Vol. 5(3), pp. 151-157, 1978. https://www.jstor.org/stable/4615705

¢ Eberlein E., Prause K. (2002) The Generalized Hyperbolic Model: Financial Derivatives and Risk Measures. In:
Geman H., Madan D., Pliska S.R., Vorst T. (eds) Mathematical Finance - Bachelier Congress 2000. Springer
Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12429-1_12

* Scott, David J, Wiirtz, Diethelm, Dong, Christine and Tran, Thanh Tam, (2009), Moments of the generalized
hyperbolic distribution, MPRA Paper, University Library of Munich, Germany, https://EconPapers.repec.org/
RePEc:pra:mprapa:19081.

Implementation: scipy.stats.genhyperbolic

Generalized Inverse Gaussian Distribution

The probability density function is given by:

f(a;p,0) = 2P~ exp(=b(z + 1/2)/2)/(2K,(D)),

where x > 0 is a real number and the parameters p, b satisfy b > 0. K, is the modified Bessel function of second kind
of order v (scipy.special.kv).

If X is geninvgauss(p, b), then the distribution of 1/X is geninvgauss(-p, b). The inverse Gaussian distribution (scipy.
stats.invgauss) is a special case with p=-1/2.

Implementation: scipy.stats.geninvgauss

Generalized Normal Distribution

This distribution is also known as the exponential power distribution. It has a single shape parameter 5 > 0. It reduces
to a number of common distributions.

Functions

g = B
B
F(x:8) = ;+sgn(x)72(;/(f’/ 5))

170 Chapter 2. SciPy User Guide

https://en.wikipedia.org/wiki/Normal_variance-mean_mixture
https://en.wikipedia.org/wiki/Generalised_hyperbolic_distribution
https://www.jstor.org/stable/4615705
https://doi.org/10.1007/978-3-662-12429-1_12
https://EconPapers.repec.org/RePEc:pra:mprapa:19081
https://EconPapers.repec.org/RePEc:pra:mprapa:19081

SciPy Reference Guide, Release 1.8.0

7 is the lower incomplete gamma function. y (s,) = [t*~te~*dt.

a1 8
h[X’B]_B_IOg<2F(1/B)>

Moments

pw = 0
m, = 0
mg = 0
Y
v (1/8)
m =0
I'(5/8)I'(1/8)
" rEE

Special Cases

 Laplace distribution (3 = 1)
 Normal distribution with ps = 1/2 (8 = 2)

* Uniform distribution over the interval [—1, 1] (8 — c0)

Sources

* https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
* https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function

Implementation: scipy.stats.gennorm

Gilbrat Distribution

Special case of the log-normal with o = 1 and S = 1.0, typically also L = 0.0.)

flzi0) = ﬁexp <—; (logm)2>
F(w0) = ‘P(logw)=% 1+erf(1(i§§m)>

G(go) = exp(®'(q)

1 Ve

e = ele—1]

7= Ve—1(2+e)
vo = et +2e3+3e2 -6

2.12. Statistics (scipy.stats) 171

https://en.wikipedia.org/wiki/Generalized_normal_distribution#Version_1
https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function

SciPy Reference Guide, Release 1.8.0

h[X] log (\/%)

1.4189385332046727418

%

Implementation: scipy.stats.gilbrat

Gompertz (Truncated Gumbel) Distribution

For z > 0 and ¢ > 0 . In JKB the two shape parameters b, a are reduced to the single shape-parameter ¢ = b/a . As a
is just a scale parameter when a # 0 . If a = 0, the distribution reduces to the exponential distribution scaled by 1/b.
Thus, the standard form is given as

f(z;¢) = ce®exp(—c(e” —1))
F(z;e) = 1—exp(—c(e®—1))

G(qc) = log (1 - ilog(l - q))
h[X]=1-log(c) — e“Ei(1,¢),
where

Ei(n,x) = / t~"exp (—axt) dt
1

Implementation: scipy.stats.gompertz

Gumbel (LogWeibull, Fisher-Tippetts, Type | Extreme Value) Distribution

One of a class of extreme value distributions (right-skewed).

fx) = exp (f (:v + e*$))
F(z) = exp(—e™®)
G(q) = —log(—log(q))

M@#)=T(1-1t)

po= v=-v¢o(1)
2
2 = F
126
71 - 3 C(3)
0
_
Y2 = 5
mq = 0
m, = —log(log2)

h[X] ~ 1.0608407169541684911

Implementation: scipy.stats.gumbel_r

172 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Gumbel Left-skewed (for minimum order statistic) Distribution

@) = explo—e)

F(z) = 1—exp(—e€®)

G(qg) = log(—log(l—q))
M@#)=T(1+¢)

Note, that ;. is negative the mean for the right-skewed distribution. Similar for median and mode. All other moments are
the same.

h[X] ~ 1.0608407169541684911.

Implementation: scipy.stats.gumbel_ 1

HalfCauchy Distribution

If Z is Hyperbolic Secant distributed then eZ is Half-Cauchy distributed. Also, if 1 is (standard) Cauchy distributed,
then |TV| is Half-Cauchy distributed. Special case of the Folded Cauchy distribution with ¢ = 0. The support is z > 0.
The standard form is

2
A ()
F(z) = %aretan(x)

6 ~ wn(Za)
M (t) = cost + % [Si(¢t) cost — Ci(—t)sint]

where Si(t) = [j #t= dr, Gi(t) = — [<s*du.

mg = 0
m, = tan(—
4
No moments, as the integrals diverge.
h(X] = log(2nm)

1.8378770664093454836.

Implementation: scipy.stats.halfcauchy

HalfNormal Distribution

This is a special case of the chi distribution with . = @ and S = b and v = 1. This is also a special case of the folded
normal with shape parameter ¢ = 0 and S = S. If Z is (standard) normally distributed then, |Z| is half-normal. The

standard form is
2
\/7 e~ z? /2
T

F 20 () — 1
Gl = o (1;(1)

2.12. Statistics (scipy.stats) 173

~

—~ —~
8 8]

~— ~—
(I

SciPy Reference Guide, Release 1.8.0

2
uo= -
™
2
pe = 1——=
™
Vid—m)
no= 3/2
(m—2)
_ 8(m—3)
2= (7r—2)2
mqg = 0

h[X] = log(”;)
0.72579135264472743239.

Q

Implementation: scipy.stats.halfnorm

Half-Logistic Distribution

In the limit as ¢ — oo for the generalized half-logistic we have the half-logistic defined over x > 0. Also, the distribution
of | X | where X has logistic distribution.

. 2" - 1 2 (T
flx) = 7(1 n e—x)Q = 2sech (2)
1—e* T
F(z) = e tanh (§>
G(qg) = log (11_(1) = 2arctanh (q)

M () = 1 — ty (;;>+two (1;)

where 1., is the polygamma function v,,(z) = % log(T'(2)).

f,=2(1-2"")nl¢(n) n#l

py = 2log(2)
2
py = 20(2) = 3
py = 9¢(3)
;L _ Tt
iy = ax@=""
h[X] = 2-1log(2)

~ 1.3068528194400546906.

Implementation: scipy.stats.halflogistic

174 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Hyperbolic Secant Distribution

Related to the logistic distribution and used in lifetime analysis. Standard form is (defined over all =)

flz) = %Sech(x)

2
F(z) = farctan e”)

(
G(q) = log (tan (gq>)

B 0 nodd
o Cn/2 T meven

where C,,, is an integer given by

o i1 —¢m+1,3)]
m 7T2m+122m

_1 16™ 1
= 4(_1)m ! B2m+1 (4>

2m+1
where By, 41 () is the Bernoulli polynomial of order 2m + 1 evaluated at 1/4. Thus

0 n odd

/ = n
%‘@<W”%ﬂmM9nmn

mg=my=p = 0
T

pe =

Implementation: scipy.stats.hypsecant

Gauss Hypergeometric Distribution

The four shape parameters are « > 0, 8 > 0, —0o < v < 00, and z > —1. The support is = € [0, 1].

1
Let C =
Y T B(.f) o (hat B —2)
: Y | S
f(,I,Oé,B,’Y,Z) - C'r (1+Z$)7
, _ Btapf)sFi(vatniatf+n—z)
Hin B (o, p) 2F1 (v, 05+ 35 —2)

Implementation: scipy.stats.gausshyper

2.12. Statistics (scipy.stats)

175

SciPy Reference Guide, Release 1.8.0

Inverted Gamma Distribution

Special case of the generalized Gamma distribution with ¢ = —1 and a > 0 and support z > 0.
xmot 1
e = grew(-)
I(a3)
F (z; = £
@0 = T
- -1
G(g;a) = {F L (a,T (a) q)}
I'(a—n)
!/
"= T) a>n
! >1
= a
a a—1
! 2 a>2
= — — a
1 @-2)(a—1 "
1
@3 @-2)a-1) SHH2 — p
Al = 3/2
Ha
1
D ey — s — 6pP e — pt
T2 = 3 -3
M3
1
mag =
L |

hiX]=a—(a+1)¢(a)+1logT (a).
where U is the digamma function 1(z) = <L log(I'(z)).

Implementation: scipy.stats.invgamma

Inverse Normal (Inverse Gaussian) Distribution

The standard form involves the shape parameter y (in most definitions, L = 0.0 is used). (In terms of the regress
documentation u = A/B) and B = S and L is not a parameter in that distribution. A standard form is > 0

Pl = Ao (o
’ V2ra? 20p®)

ren = 4558 e (o553

Glgp) = F'gp)
po= p
p2 = M3
o= 3V
Y2 = 1op

mg = %(\/9u2+4—3u)

This is related to the canonical form or JKB “two-parameter” inverse Gaussian when written in it’s full form with scale
parameter .S and location parameter L by taking L = 0 and S = A, then S is equal to po where pg is the parameter

176 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

used by JKB. We prefer this form because of it’s consistent use of the scale parameter. Notice that in JKB the skew
(\/61) and the kurtosis (2 — 3) are both functions only of us/\ = uS/S = u as shown here, while the variance and
mean of the standard form here are transformed appropriately.

Implementation: scipy.stats.invgauss

Inverted Weibull Distribution

There is one shape parameter ¢ > 0 and the support is x > 0. Then

f(z;e) = co “lexp (f:c*c)
F(z;¢) = exp(-27°)
Glge) = (~logg)™ /"

h[X] = 1+’y+%—log(c)
where is Euler’s constant.

Implementation: scipy.stats.invweibull

Johnson SB Distribution

There are two shape parameters a € R and b > 0, and the support is « € [0, 1].

b
flaad) = 50 (a—l—bloglfx)

<I><a—|—blog <)
1—x

1
1+exp (—% (@1 (q) — a))

F (x;a,b)

G(g;a,b) =

Implementation: scipy.stats. johnsonsb

Johnson SU Distribution

There are two shape parameters ¢ € R and b > 0, and the support is x € R.

f(z;a,b) = \/%T¢(a+blog(x+ x2+1>)
<I><a+blog(x+ x2+1))

G(g;a,b) = sinh(q’_l(bq)—a)

F (z;a,b)

Implementation: scipy.stats. johnsonsu

2.12. Statistics (scipy.stats) 177

SciPy Reference Guide, Release 1.8.0

KSone Distribution

This is the distribution of maximum positive differences between an empirical distribution function, computed from n
samples or observations, and a comparison (or target) cumulative distribution function.

Writing D, = sup; (Fempirical,n(t) — Frarget(t)), ksone is the distribution of the D, values. (The distribution of
D;, = sup, (Fiarget(t) — Fempirical,n (t)) differences follows the same distribution, so ksone can be used for one-
sided tests on either side.)

There is one shape parameter n, a positive integer, and the support is « € [0, 1].

n(1—=)] n .\ j-1 o\ n—Jj
F(n,xz) = 1- Z (j)x(x—i—i) (1—;1:—2)

§=0
= 1 — scipy.special.smirnov(n,)

x 2
lim F) = %
e <” \/ﬁ) ¢

References

* “Kolmogorov-Smirnov test”, Wikipedia https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test

¢ Birnbaum, Z. W.; Tingey, Fred H. “One-Sided Confidence Contours for Probability Distribution Functions.” Ann.
Math. Statist. 22 (1951), no. 4, 592-596.

Implementation: scipy.stats.ksone

KStwo Distribution

This is the distribution of the maximum absolute differences between an empirical distribution function, computed from n
samples or observations, and a comparison (or target) cumulative distribution function, which is assumed to be continuous.
(The “two” in the name is because this is the two-sided difference. ksone is the distribution of the positive differences,
D;F, hence it concerns one-sided differences. kstwobign is the limiting distribution of the normalized maximum
absolute differences \/nD,,.)

Writing D,, = sup, |Fempirical,n(t) — Ftarget(t)], kstwo is the distribution of the D,, values.

kstwo can also be used with the differences between two empirical distribution functions, for sets of observations with
m and n samples respectively. Writing D, ,, = sup, |F1,m (t) — Fa,,,(t)|, where Fy ,,, and F; ,, are the two empirical

distribution functions, then Pr(D,, ,, <) = Pr(Dy < x) under appropriate conditions, where N = (mn)

m+n

There is one shape parameter n, a positive integer, and the support is = € [0, 1].

The implementation follows Simard & L’Ecuyer, which combines exact algorithms of Durbin and Pomeranz with asymp-
totic estimates of Li-Chien, Pelz and Good to compute the CDF with 5-15 accurate digits.

178 Chapter 2. SciPy User Guide

https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test

SciPy Reference Guide, Release 1.8.0

Examples

>>> from scipy.stats import kstwo

Show the probability of a gap at least as big as 0, 0.5 and 1.0 for a sample of size 5

>>> kstwo.sf ([0, 0.5, 1.0], 5)
array ([1. , 0.112, 0. 1)

Compare a sample of size 5 drawn from a source N(0.5, 1) distribution against a target N(0, 1) CDF.

>>> from scipy.stats import norm

>>> n = 5

>>> gendist = norm(0.5, 1) # Normal distribution, mean 0.5, stddev 1
>>> x = np.sort (gendist.rvs(size=n, random_state=np.random.default_rng()))
>>> x

array ([-1.59113056, -0.66335147, 0.54791569, 0.78009321, 1.276413651])
>>> target = norm(0, 1)

>>> cdfs = target.cdf (x)

>>> cdfs

array ([0.0557901 , 0.25355274, 0.7081251 , 0.78233199, 0.89909533])

Construct the Empirical CDF and the K-S statistics (Dn+, Dn-, Dn)

>>> ecdfs = np.arange(n+1l, dtype=float)/n

>>> cols = np.column_stack ([x, ecdfs[1:], cdfs, cdfs - ecdfs[:n], ecdfs[l:] —_
—~cdfs])

>>> np.set_printoptions (precision=3)

>>> cols

array([[-1.591, 0.2 , 0.056, 0.056, 0.1447,
[-0.663, 0.4 , 0.254, 0.054, 0.146],
[0.548, 0.6 , 0.708, 0.308, -0.108],
[0.7¢ , 0.8 , 0.782, 0.182, 0.018],
[1.276, 1. , 0.899, 0.099, 0.10111])
>>> gaps = cols[:, —2:]
>>> Dnpm = np.max (gaps, axis=0)
>>> Dn = np.max (Dnpm)
>>> iminus, iplus = np.argmax(gaps, axis=0)
>>> print ('Dn- = 2f (at x=2.2f)"'" % (Dnpm[0], x[iminus]))
Dn- = 0.308125 (at x=0.55)
>>> print ('Dn+ = ¢f (at x=%.27f)'" % (Dnpm[1l], x[iplus]))
Dn+ = 0.146447 (at x=-0.66)
>>> print('Dn = 2f' % (Dn))
Dn = 0.308125
>>> probs = kstwo.sf (Dn, n)

>>> print (chr (10).join(['For a sample of size %d drawn from a N(0, 1).
—distribution:' % n,

c.. ' Kolmogorov—-Smirnov 2-sided n=%d: Prob(Dn >= $f) = %.4f' % (n, Dn,.
—probs) 1))

For a sample of size 5 drawn from a N(0, 1) distribution:

Kolmogorov-Smirnov 2-sided n=5: Prob(Dn >= 0.308125) = 0.6319

Plot the Empirical CDF against the target N(0, 1) CDF

2.12. Statistics (scipy.stats) 179

SciPy Reference Guide, Release 1.8.0

>>> import matplotlib.pyplot as plt

>>> plt.step(np.concatenate([[-3], x]), ecdfs, where='post', label="'Empirical.

—~CDE")

>>> x3 = np.linspace (-3, 3, 100)

>>> plt.plot (x3, target.cdf(x3), label='CDEF for N(O0, 1)")

>>> plt.ylim ([0, 11); plt.grid(True); plt.legend();

>>> plt.vlines([x[iminus]], ecdfs[iminus], cdfs[iminus], color='r', linestyle=

—'solid', 1lw=4)

>>> plt.vlines ([x[iplus]], cdfs[iplus], ecdfs[iplus+l], color='m', linestyle=

—~'solid', 1lw=4)

>>> plt.annotate('Dn-', xy=(x[iminus], (ecdfs[iminus]+ cdfs[iminus])/2),
xytext=(x[iminus]+1, (ecdfs[iminus]+ cdfs[iminus])/2 - 0.02),

.. arrowprops=dict (facecolor='white', edgecolor='r', shrink=0.

—05), size=15, color='r'");

>>> plt.annotate('Dn+', xy=(x[iplus], (ecdfs[iplus+l1l]+ cdfs[iplus])/2),
xytext=(x[iplus]-2, (ecdfs[iplus+1]+ cdfs[iplus])/2 - 0.02),

e arrowprops=dict (facecolor="'white', edgecolor='m', shrink=0.

—05), size=15, color='m');

>>> plt.show ()

References

* “Kolmogorov-Smirnov test”, Wikipedia https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test

¢ Durbin J. “The Probability that the Sample Distribution Function Lies Between Two Parallel Straight Lines.” Ann.
Math. Statist., 39 (1968) 39, 398-411.

e Pomeranz J. “Exact Cumulative Distribution of the Kolmogorov-Smirnov Statistic for Small Samples (Algorithm
487).” Communications of the ACM, 17(12), (1974) 703-704.

¢ Li-Chien, C. “On the exact distribution of the statistics of A. N. Kolmogorov and their asymptotic expansion.” Acta
Matematica Sinica, 6, (1956) 55-81.

* Pelz W, Good 1J. “Approximating the Lower Tail-areas of the Kolmogorov-Smirnov One-sample Statistic.” Journal
of the Royal Statistical Society, Series B, (1976) 38(2), 152-156.

¢ Simard, R., L’Ecuyer, P. “Computing the Two-Sided Kolmogorov-Smirnov Distribution”, Journal of Statistical
Software, Vol 39, (2011) 11.

Implementation: scipy.stats.kstwo

KStwobign Distribution

This is the limiting distribution of the normalized maximum absolute differences between an empirical distribution func-
tion, computed from n samples or observations, and a comparison (or target) cumulative distribution function. (ksone
is the distribution of the unnormalized positive differences, D,J{)

Writing D,, = sup, |Fempiricat,n(t) — Frarget(t)|, the normalization factor is y/n, and kstwobign is the limiting
distribution of the v/nD,, values as n — oo.

Note that D,, = max(D;", D7), but D, and D, are not independent.

kstwobign can also be used with the differences between two empirical distribution functions, for sets of observa-
tions with m and n samples respectively, where m and n are “big”. Writing D,, ,, = sup, |F1 m(t) — F2,,(t)|, where

180 Chapter 2. SciPy User Guide

https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test

SciPy Reference Guide, Release 1.8.0

Fy , and F5,, are the two empirical distribution functions, then kstwobign is also the limiting distribution of the

(%’Tn) D,,, », values, as m,n — oo and m/n — a # 0, cc.

There are no shape parameters, and the support is € [0, 00).

F(z) = 1-2) (-1)ktem2%"
k=1
_ V2T ke se?)

T
k=1

= 1 — scipy.special.kolmogorov(n, x)

flz) = 8z (~1)F 1g2e 2%’
k=1

References

¢ “Kolmogorov-Smirnov test”, Wikipedia https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test

* Kolmogoroff, A. “Confidence Limits for an Unknown Distribution Function.”” Ann. Math. Statist. 12 (1941), no.
4,461-463.

* Smirnov, N. “On the estimation of the discrepancy between empirical curves of distribution for two independent
samples” Bull. Math. Univ. Moscou., 2 (1039), 2-26.

¢ Feller, W. “On the Kolmogorov-Smirnov Limit Theorems for Empirical Distributions.” Ann. Math. Statist. 19
(1948), no. 2, 177-189. and “Errata” Ann. Math. Statist. 21 (1950), no. 2, 301-302.

Implementation: scipy.stats.kstwobign

Laplace (Double Exponential, Bilateral Exponential) Distribution

1

f@) = 567&‘
1 =x
_ 5€ <0
F(z) = {1—%6” x>0
_ log (29) q<3
Gla) = {—10g(2—2q) q>§
Mg =My = [0
p2 = 2
m =0
Yo = 3

The ML estimator of the location parameter is
L = median (X;)

where X is a sequence of /N mutually independent Laplace RV’s and the median is some number between the %N th
and the (IN/2 + 1)th order statistic (e.g. take the average of these two) when N is even. Also,
1
S=y 2% -1

Jj=1

2.12. Statistics (scipy.stats) 181

https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test

SciPy Reference Guide, Release 1.8.0

Replace I, with L if it is known. If L is known then this estimator is distributed as (2N)71 S-x3y -
h[X] = log(2e)
~ 1.6931471805599453094.

Implementation: scipy.stats.laplace

Asymmetric Laplace Distribution

This distribution is a generalization of the Laplace distribution. It has a single shape parameter ~ > 0 that species the
distribution’s asymmetry. The special case x = 1 yields the Laplace distribution.

Functions
o1
F(z,k) = 1-— PP exp(—zk), = >0;
= #GXP(I/K/), T < O
1
flx, k) = WGXP(—Z"@), x 2 0;
1
= mexp(m/ls), T < 0
no= K —k
py = K24 K2
2(1 — K5)
no= 0n3/2
(1 + K%)3/
6(1+ K®)
T2 = 2
(1+ k%)
References

* “Asymmetric Laplace distribution”, Wikipedia https://en.wikipedia.org/wiki/Asymmetric_Laplace_distribution

* Kozubowski TJ and Podgoérski K, “A Multivariate and Asymmetric Generalization of Laplace Distribution,” Com-
putational Statistics 15, 531-540 (2000). DOI:10.1007/PL00022717

Implementation: scipy.stats.laplace_asymmetric

Left-skewed Lévy Distribution

Special case of Lévy-stable distribution with o = % and 8 = —1. The support is z < 0. In standard form

1

@) = Wexp(—w)
F(z) = 2@(\/%')—1
TR

182 Chapter 2. SciPy User Guide

Q
—
<
=

|

https://en.wikipedia.org/wiki/Asymmetric_Laplace_distribution
https://doi.org/10.1007/PL00022717

SciPy Reference Guide, Release 1.8.0

No moments.

Implementation: scipy.stats.levy_ 1

Lévy Distribution

A special case of Lévy-stable distributions with av = % and 8 = 1 and support = > 0. In standard form it is defined for
x> 0as

~

—~
8

~—
[

1 1
e _
V21 Xp(2$)

1
F = 2|1-® | —
@0 = 2o ()]
_ -1 _4q -2
Gw = [(1-3)]
It has no finite moments.
Implementation: scipy.stats.levy
Logistic (Sech-squared) Distribution

A special case of the Generalized Logistic distribution with ¢ = 1. The support is z € R.

This distribution function has a direct connection with the Fermi-Dirac distribution via its survival function. L.e. scipy.
stats.logistic.sf isequivalent to the Fermi-Dirac distribution.

. exp (—7)
T = ew o)
1
PO = o
G(g) = —log(l/g—1)
S(x) = npx)= I—FG;XP(.T)
po= y+o(1)=0
2 = % +¢1(1) = %
SRR SO
Ko
(% + 3 (U) 6
Yo = T =T
H2 5
mg = logl=20
m, = —log(2—-1)=0

where 1),,, is the polygamma function v,,,(z) = % log(T'(2)).

hiX] = 1.

Implementation: scipy.stats.logistic

2.12. Statistics (scipy.stats) 183

SciPy Reference Guide, Release 1.8.0

Log Double Exponential (Log-Laplace) Distribution

One shape parameter ¢ > 0. The support is z > 0.

oo - {
F(z;¢) = {1—5%0 x>1

G (g;c)

h[X] = log (2:)

Implementation: scipy.stats.loglaplace

Log Gamma Distribution

A single shape parameter ¢ > 0 . The support is z € R.

exp (cx — e”)

e = =

F(z;c) =

G(gic) = log(v " (c,ql' ()

where ~ is the lower incomplete gamma function, v (s, z) = [t*~te~"dt.

o0
MZZ/ logy]" y“ " exp (—y) dy.
0

no= 4
p2 = o —p
M= 3ppe —
"= 3/2
Ko
/_4 _62 _ 4
My HE3 W2 — | 3
Y2 = 2 -
125

2

Implementation: scipy.stats.loggamma

Log Normal (Cobb-Douglass) Distribution

Has one shape parameter o >0. (Notice that the “Regress” A = log S where S is the scale parameter and A is the mean
of the underlying normal distribution). The support is z > 0.

2
f(@;0) Ux127r P <_; (10536))

Flaio) = @ (k’g“’)

g

G(go) = exp(ac® ' (q))

184 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

I = exp (02/2)
Lo = exp (02) [exp (02) — 1}
no= Vp-1(2+p)

Y2 pt+2p°+3p> -6 p=e¢

2

Notice that using JKB notation we have § = L, (= log .S and we have given the so-called antilognormal form of the
distribution. This is more consistent with the location, scale parameter description of general probability distributions.

h[X] = % [1+log (27) 4 2log (0)] .

Also, note that if X is a log-normally distributed random-variable with I = 0 and S and shape parameter o. Then, log X
is normally distributed with variance o2 and mean log S.

Implementation: scipy.stats.lognorm

Log-Uniform Distribution

This random variable is log-uniform. That is, if loguniform (10**-1, 10**1) is specified, 0.1, 1, 10 are all
equally likely.

There are two shape parameters a, b > 0 and the support is = € [a, b].

1
f@sa,b) = xlog (b/a)
, _ log(z/a)
F(z;a,b) = Tog (b/a)
G(ad) = aesp(alog(v/a) =a)
d = log(a/b)
a—b
= 74
= Ma—;—b_/ﬂ:(a—b)[a(d;dz)—i—b(d—i—m]

V2 [md (a—b)% +d? (a2 (2d — 9) + 2abd + b* (2d + 9))}

3dva—bla(d—2)+b(d+2)*?
—36 (a — b)? +36d (a — b)° (a +b) — 164 (a® — b?) + 3d® (a® + %) (a + b)

Y2 = 5 -3
3(a—b)la(d—2)+b(d+2)]

"=

mg = a

m, = Vab

a

h[X] = %log(ab) +log {log (l’)} .

Implementation: scipy.stats.loguniform.

2.12. Statistics (scipy.stats) 185

SciPy Reference Guide, Release 1.8.0

Maxwell Distribution

This is a special case of the Chi distribution with L = 0 and S = —= and v = 3. The support is z > 0.

\/E
2 2
flz) = ;1726 v
2
1(5%)
S V€
2
(3
Glg) = /271 5d(35)
2
o= 2 p
8
p2 = 3= p
. 32 — 107
1 = — __a/9
(3m — 8)*/?
~ —127% + 1607 — 384
” (37 — 8)°
mg = \/5

31,3
- IN=L [Z (=
m \/7 (2,2 (2))
2
h[X] = log (,/Z) + .
Implementation: scipy.stats.maxwell

Mielke’s Beta-Kappa Distribution

A generalized F distribution. Two shape parameters x and 6, with support z > 0. The 3 in the DATAPLOT reference
is a scale parameter.

Hl’ﬁil
fleir,0) = ——— 5%
@m0 = e
xlﬁ:
Flakb) = ———5
(1+a0)"/*
qa/K 1/9
G(g;k,0) = (1_qgm>

Implementation: scipy.stats.mielke

186 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Nakagami Distribution

Generalization of the chi distribution. Shape parameter is v > 0. The support is x > 0.

flzv) = %z%’*l exp (—va?)
v, va?

F(x;v) = ’Y(F’(I/))

Glgv) = |7 (nal ()

where ~ is the lower incomplete gamma function, v (v,) = [/ t*~te~"dt.

. IL(v+3)
VT (v)
pe = [1-p?
(1 —dops)
71 - 3/2
2vp;
—6uty + (8v —2)p? — 20+ 1

2
Vs

Y2 =

Implementation: scipy.stats.nakagami

MLE of the Nakagami Distribution in SciPy (nakagami . fit)

The probability density function of the nakagami distribution in SciPy is

v N2l N2
Jas0) =25 (x U“) exp (v <x U“)) : M

for x such that xjf” > 0, where v > % is the shape parameter, p is the location, and o is the scale.

The log-likelihood function is therefore

(v, p,0) = gv;log (20—;(:) (5“0”)2”1 exp (1/ <in “>2>> :)

which can be expanded as

N
l(v, p,0) = Nlog(2) + Nvlog(v) — Nlog (I'(v)) —2Nvlog(o) + (2v — 1) Z log(w; — p) —vo 2 Z (zi — p)?,
-)

Leaving supports constraints out, the first-order condition for optimality on the likelihood derivatives gives estimates of
parameters:

al ol Ti— b ol Ti— [2

=z - AV i _ v =

v e) = N (14 log(w) <y>)+2;10g(-) Z(-) 0 @

ol N 2w &

@(U,u,a):(1—2V)Zm+g—l;z.xl—u:0,and (5)
i=1"" i=1

al 1 e)

55 v 1:0) = —2Nv— + w0 > (@i —w)? =0, (6)

2.12. Statistics (scipy.stats) 187

SciPy Reference Guide, Release 1.8.0

where (¥ is the polygamma function of order 0; i.e. (¥ (v) = £ logT'(v).

However, the support of the distribution is the values of x for which % > 0, and this provides an additional constraint
that
< minz;. (7)
(2

For v = %, the partial derivative of the log-likelihood with respect to reduces to:

ol o
g o) =0 > (@i —), (2.10)
=1

which is positive when the support constraint is satisfied. Because the partial derivative with respect to y is positive,
increasing p increases the log-likelihood, and therefore the constraint is active at the maximum likelihood estimate for p

1
W=minx;, v=—. ()
i 2
For v sufficiently greater than %, the likelihood equation g—i (v, u, o) = 0 has a solution, and this solution provides the
maximum likelihood estimate for p. In either case, however, the condition ¢ = min; z; provides a reasonable initial
guess for numerical optimization.

Furthermore, the likelihood equation for o can be solved explicitly, and it provides the maximum likelihood estimate

N
o= ==~ 9)
Hence, the _fitstart method for nakagami uses
Lo = min x; and (2.11)
N 2
o0 = \/ . @12

as initial guesses for numerical optimization accordingly.
Noncentral chi-squared Distribution

The distribution of Z;’Il (Z; + 52-)2 where Z; are independent standard normal variables and d; are constants. A\ =

>, 82 > 0. (In communications it is called the Marcum-Q function). It can be thought of as a Generalized Rayleigh-

Rice distribution.

The two shape parameters are v, a positive integer, and A, a positive real number. The support is z > 0.

flzv) = @*(A+x)/21 (f)(yiz)/4 I_2y/2 (m)

2\
Fzv,) =) {()\g?)jeAm} Pr X125 < 7]
=0
GG\ = F g\
b= v+A
pr = 2(v+2))
B \/g(y+3)\)
PN
12 (v +4X)
T Ly

where T, (y) is a modified Bessel function of the first kind.

188 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

References

e “Noncentral chi-squared distribution”, Wikipedia https://en.wikipedia.org/wiki/Noncentral_chi-squared_
distribution

Implementation: scipy.stats.ncx?2

Noncentral F Distribution

The distribution of (X;/X5) (v2/v1) if X; is non-central chi-squared with v; degrees of freedom and parameter A, and
X is chi-squared with v, degrees of freedom.

There are 3 shape parameters: the degrees of freedom v; > 0 and v5 > 0;and A > 0.

A (Avyx))2 va)2 by
fz; N\ vi,10) = exp §—|—m V11/ 1/22/33 /2-1

V1 12 v /2*1 V1T
g2 b (5)T(1+%) L, (‘W)
B (4

550 (57)

X (Vg + v12)

V1/2—1
l/2/2

If A = 0, the distribution becomes equivalent to the Fisher distribution with v, and v» degrees of freedom.

where L (z) is an associated Laguerre polynomial.

Implementation: scipy.stats.ncf

Noncentral t Distribution

The distribution of the ratio

U+)\
Xv/\/;

2.12. Statistics (scipy.stats) 189

https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

SciPy Reference Guide, Release 1.8.0

where U and Y, are independent and distributed as a standard normal and chi with v degrees of freedom. Note A > 0
andv > 0.

pr/2r v+1)

[l Av) =
e /2 (y 4+ 22)Y2T (v)2)
2.2
o \/>)\37 lFl (7 27 m)
(v+22)T (4
1)\2 2
B 1 (i P9 (u+m2))
Vv + 22 ()
r'v+1) vA?
= <D | —
2072 frol ()2) P | v + 22
(v—1)/2
(=) ()
v+ z2 Vv + 12
. B Fl,)u(ac) x>0
Fledv) = { 1—F, ,(x) <0
where
- 1 1) v
(1) = +§;) 5)ty (g+1,§)

112

+
P
2

b (j! | (ﬁ)J

% = \fﬂre((fz?,)m (Mz)j

—(H—T)

where I, (a, b) is the regularized incomplete beta function and Airy’s Hh functionis 1, (z) = & (Vl =y J tve dt.

Implementation: scipy.stats.nct

Normal Distribution

67I2/2
fz) = Wer
F(z) = ®(x) ;—F;erf(\:})
Glg) = @' (g
Mg = My, = [0
p2 = 1
v = 0
v2 = 0

190 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

h[X]

log (\/ 27re)
1.4189385332046727418

%

Implementation: scipy.stats.norm

Normal Inverse Gaussian Distribution

The probability density function is given by:

/a2 _ 2
flaia,b) = “e"piflfiz”m) Ky (@14 22),

where z is a real number, the parameter a is the tail heaviness and b is the asymmetry parameter satisfying ¢ > 0 and
|b] < a. K is the modified Bessel function of second kind (scipy.special.k1).

A normal inverse Gaussian random variable with parameters a and b can be expressed as X = bV + \ﬂV)X where X
is norm(0,1) and V is invgauss(mu=1/sqri(a**2 - b**2)). Hence, the normal inverse Gaussian distribution is a special
case of normal variance-mean mixtures.

Another common parametrization of the distribution is given by the following expression of the pdf:

2 _ 2
o B(§u)__a5KH(ou/5 ¥ (z M))(ﬁ s
)))) 2 2
o+ (2= 1)

In SciPys, this corresponds to a = ad, b = (9, loc = p, scale = 6.

Implementation: scipy.stats.norminvgauss

Pareto Distribution

One shape parameter b > 0 and support > 1. The standard form is

b

flasb) = =5
1
F(xz;b) = l—ﬁ
Ggb) = (11—
b
- 2 1
. -1 07
b
= — b >2
- (b—2)(b— 1)
2(b+1)vVb—2
= —~ ' ~ >3
n (b—3)vb
6 (b 4+ b2 —6b—2
vo = () b>4

b (b2 — 7b+ 12)

h(X)z%—i—l—log(c)

Implementation: scipy.stats.pareto

2.12. Statistics (scipy.stats) 191

SciPy Reference Guide, Release 1.8.0

Pareto Second Kind (Lomax) Distribution

This is Pareto of the first kind with L = —1.0 . There is one shape parameter ¢ > 0 and support x > 0.

f(z5¢) = Ata)y™

1
F(z;¢) = 1—m
G(ge) = (1—g -1

h[X]z%—&-l—log(c).

Implementation: scipy.stats. lomax

Power Log Normal Distribution

A generalization of the log-normal distribution with shape parameters o > 0, ¢ > 0 and support x > 0.

simne = oo (5 (o(-157))
F(x;0,¢) = 1<q)(lo§x)>c

G(g;0,c) = exp (—U(I)*l ((1 _q)l/c)>

= /1 exp (—naq)_l (yl/c)) dy
0

po=
po = ph—
o p — Bpups — p?
no= 3/2
Ho
_ Ha s = 6pPpp —pt
Y2 - 2 -

H3
This distribution reduces to the log-normal distribution when ¢ = 1.

Implementation: scipy.stats.powerlognorm

Power Normal Distribution

A generalization of the normal distribution, with one shape parameter ¢ > 0 and support x > 0.
flase) = co(a)(@(-a))"
F(zie) = 1-(2(-2))"
Glae) = —o7' (1-9")

192 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

po=
po = py—p’
e e
71 - 3/2
Ho
ph — 4z — 6P pg — pt
Y2 =) -3

125)
For ¢ = 1 this reduces to the normal distribution.

Implementation: scipy.stats.powernorm

Power-function Distribution

A special case of the beta distribution with b = 1. There is one shape parameter a > 0 and support z € [0, 1].

flz;a) = aa"™!
F(z;a) = 2
Glga) = ¢/
o
po= a-+1
_a(a+2)
e = (a+1)°
a—+2
— 2(1—a), 22
n (1-a) a(a+3)
B 6(@3—a2—6a+2)
T T a(a+3)(atd)
mg = 1

1
hX]=1- o —log (a)
Implementation: scipy.stats.powerlaw
R-distribution Distribution

A general-purpose distribution with a variety of shapes controlled by one shape parameter ¢ > 0. The support of the
standard distribution is x € [—1, 1].

1— a2 c/2—-1
fag = Lr)
5’5)
1 T 1 c 3
F(x;c) = +02F1(71—§;332>
2 B(%’i) 2 2°2
Iu;l:(l-l—(—l)n)B n—i-l’E
2 2 2

The R-distribution with parameter n is the distribution of the correlation coefficient of a random sample of size n drawn
from a bivariate normal distribution with p = 0. The mean of the standard distribution is always zero and as the sample
size grows, the distribution’s mass concentrates more closely about this mean.

Implementation: scipy.stats.rdist

2.12. Statistics (scipy.stats) 193

SciPy Reference Guide, Release 1.8.0

Rayleigh Distribution

This is a special case of the Chi distribution with L = 0.0 and v = 2 (no location parameter is generally used), the mode
of the distribution is S.

flr) = rem /2
F(r) = 1—e"/?
G(g) = +—2log(l-gq)
_ T
=3
_ 4 —
M2 = D)
_ 2(m=3) 7
no= 3/2
(4—m)
_ 241 — 672 — 16
” (4—n)
mg = 1
m, = 2log (2)
Yy e
R(X]=~ +log | —
1=+ (75)

Implementation: scipy.stats.rayleigh

Rice Distribution

There is one shape parameter b > 0 (the “distance from the origin”) and the support is > 0.
2 b2
fb) = wexp <x .)Io (D)
T 2 b2
F (z;b) = / aexp (a i > Iy (ab) dex
0

were I(y) is the modified Bessel function of the first kind of order 0.

ph = /2rT (1 + g) Py (—” 1;—b2>

270

Implementation: scipy.stats.rice

Reciprocal Inverse Gaussian Distribution

The pdf is found from the inverse gaussian (IG), frr¢ (%; 1) = -5 f1c: (2; 1) defined for z > 0 as

1 (x—)’
fra (zip) = WEXP _W .

et = o(552) e ()o(52)

194 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

fric (@3 1) Y € 1
n) = xp | 55—
RIG (T3 14 G p 2042
1
Frra (z;p) = 1—Fig (x,u)

Implementation: scipy.stats.recipinvgauss

Semicircular Distribution

Defined on z € [—1,1]

2
flx) = ;\/1—952
1 1
F(x) = §+7{LL’ 1—x2+arcsmm}
T
Gl = F ' (q)
mq = =p = 0
_ !
p2 = 7
m o= 0
Y2 = —1

h [X] = 0.64472988584940017414.

Implementation: scipy.stats.semicircular

Studentized Range Distribution

This distribution has two shape parameters, £ > 1 and v > 0, and the support is > 0.

u/2

Fai kyv) = ,,/2 2,,/2 ; / / e "2 (2)g sz + 2)[B(sx + 2) — B(=)]F dz ds

l/u/2
Flask) = s |, [+ 0000) 0 dds

Note: ¢(z) and ®(z) represent the normal PDF and normal CDF, respectively.

When v exceeds 100,000, the asymptopic approximation of F'(x; k,v = o0) is used:
o0
F(z;k,v=00) = k/ H(2)[®(z + 2) — B(2)]F L dz

Implementation: scipy.stats.studentized_range

2.12. Statistics (scipy.stats) 195

SciPy Reference Guide, Release 1.8.0

Student t Distribution

There is one shape parameter v > 0 and the support is € R.

I
flzv) = (%) pzS,
v x 2
VAT (5) [1+ 2]
%I(ylx2’%7%) ISO
F(l‘,V) = 1 v v 1
131 u+x2’§’§> 220
v 1
G (V) TSN
q; = v 1
\/171(2—2(17272) v QZ§
Mmp=mg=p = 0
SR 4 > 2
Ha = v—2 v
1 = 0 v>3
6
= >4
" v—4 v

where I (z;a, b) is the incomplete beta integral and 1! (I (x;a,b) ;a,b) = x. As v — oo, this distribution approaches
the standard normal distribution.

=2 o (157) (9] e n (53]

where () is the digamma function and B(x, y) is the beta function.
References

* “Student’s t-distribution”, Wikipedia, https://en.wikipedia.org/wiki/Student%?27s_t-distribution

Implementation: scipy.stats.t

Trapezoidal Distribution

Two shape parameters ¢ € [0, 1], d € [0, 1] giving the distances to the first and second modes as a percentage of the total
extent of the non-zero portion. The location parameter is the start of the non- zero portion, and the scale-parameter is
the width of the non-zero portion. In standard form we have = € [0,1].

2
d =
u(c, d) P)
“ T <c
f(z;e,d) = U c<z<d
uﬁ x>d
“2“7: r<c
F (z;c,d) % +u(r —c) c<z<d
1132
1—2((1 d)) T >d
ge(d—c+1) g<c
G (g;c,d) I+3 q<d
TRy LT R

Implementation: scipy.stats.trapezoid

196 Chapter 2. SciPy User Guide

https://en.wikipedia.org/wiki/Student%27s_t-distribution

SciPy Reference Guide, Release 1.8.0

Triangular Distribution

One shape parameter ¢ € [0, 1] giving the distance to the peak as a percentage of the total extent of the non-zero portion.
The location parameter is the start of the non- zero portion, and the scale-parameter is the width of the non-zero portion.
In standard form we have = € [0, 1].

2% r<c
f(.i?,C) = {Qiﬂcﬁ x>c
’ <
LA r<c
F (x: — c
(7] { ZZZ‘E%JFC rT>c
L — Vea g<c
cwo = {_ nlhamg s
_ c+1
k=373
_ 1—c+c?
M2 = 718
V2(2c—1)(c+1)(c—2)
mo= 213/2
5(1—c+c?)
_ 3
Yo = 5

1
h(X) = log (2\/E>
—0.19314718055994530942.

Q

Implementation: scipy.stats.triang

Truncated Exponential Distribution

This is an exponential distribution defined only over a certain region 0 < x < B . In standard form this is

—x

e
f(z;B) = 1-cF
1—e7"
F(x;B) = 1_e¢-B
G(g;B) = —log(l—q+gqeP)

w,=T(1+n)—T(1+n,B)

1+eB(B-1)

h[X]=log(e” — 1)+ [oF

Implementation: scipy.stats.truncexpon

2.12. Statistics (scipy.stats) 197

SciPy Reference Guide, Release 1.8.0

Truncated Normal Distribution

A normal distribution restricted to lie within a certain range given by two parameters A and B . Notice that this A and
B correspond to the bounds on x in standard form. For x € [A, B] we get

I = e
rean - S
G(:A,B) = &7 (q@(B)+2(A)(1-q))
where
1 2
o) = =/

M) -6(B)
YT e -e@)
_ L A0 -BoB) (6(A)=6(B)\
e o(B)-2(4) \®(B)-o(4)
Implementation: scipy.stats.truncnorm
Tukey-Lambda Distribution
There is one shape parameter A. The support is z € R.
F@N = F@N=gmoay = 1
n U G(F (@A)) FA (A L= F (e)P
F(z;)) = G M)\
A o A
G(pA) = z-Con)
A
po=0
1
po = / G? (p; A) dp
0
20 (A +2) — M Ay70 (V) (1 — 22
_ 2
A2(1+20)T (A +3)
Mo o= 0
Ha
= =23
Y2 ‘ug
T(NT (A +3)27 2
M TN (a4 2) N (1+ 40

2V30 (V) 279330 (A + 3)T (A + 2)
- NT 20+ 23)T (A +3) '

198 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Notice that the limy_,o G (p; \) = log (p/ (1 — p))

hix] = / log [G" (p)) dp

1
/ log [p”l + (1 —p)™ dp.
0

Implementation: scipy.stats. tukeylambda

Uniform Distribution

Standard form z € [0, 1] . In general form, the lower limit is L, the upper limit is .S + L.
flz) =
F(z) = =
Gl =

1
2
1
H2 = 1
7 = 0
- 6
Yo = 3

Implementation: scipy.stats.uniform

Von Mises Distribution

There is one shape parameter £ > 0, with support € [—, 7]. For values of x < 100 the PDF and CDF formulas
below are used. Otherwise, a normal approximation with variance 1/ is used. [Note that the PDF and CDF functions
below are periodic with period 27. If an input outside « € [—, 7] is given, it is converted to the equivalent angle in this
range.]

K COS T

e
flzi) = m
1 =z 2. I, (k) sin (kx
F(z;k) = 3 + o + kz::l W
G(gr) = F7'(x35)
where I} (k) is a modified Bessel function of the first kind.
p =0
ty = /7T 22 f (z; k) dx
1 = 0 '
fjﬂ 2t f (w5 k) dx
Y2 =) -3

This can be used for defining circular variance.

Implementation: scipy.stats.vonmises

2.12. Statistics (scipy.stats) 199

SciPy Reference Guide, Release 1.8.0

Wald Distribution

Special case of the Inverse Normal with shape parameter set to 1.0. It has support = > 0.

Implementation: scipy.stats.wald

Weibull Maximum Extreme Value Distr

Defined forx < Oandc > 0.
f(z;5¢)
F (z;¢)
G (g;c)

(z—1)°

- (_)

ibution

c(—2)exp (— (—a)°)
exp (— (—)°)
—(~logq)"/*

The mean is the negative of the right-skewed Frechet distribution given above, and the other statistical parameters can be

computed from

W= (~1)"T (1 + %)

wo= —I‘<1+1>
C
pe = F(1+2)—F2<1+1>
C C
T(1+2)-30(1+2)T(1+21)+2r3(1+1)
no= - 3/2
Ko
P+ A1+)T (1 +2) 462 (14+2)T(1+2) —30* (1+ 1) 5
”o= I
1
c—1\¢
my = {—(C) ife>1
0 if c <=
m, = —In(2)¢
h[X]:—%—log(c)—&-v—i-l

where ~y is Euler’s constant and equal to

v =~ 0.57721566490153286061.

Implementation: scipy.stats.weibull__

max

200

Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Weibull Minimum Extreme Value Distribution

A type of extreme-value distribution with a lower bound. Defined for z > O and ¢ > 0

f(z;e) = ca®lexp(—x°)

F(z;e) = 1—exp(—z°

Glge) = [~log(1—q)*
er(ie)

2 1
pe = F(1+)—FQG+->
C C

F(1+2)-30(1+2)0(1+1)+203(1+ 1)

(6]

"= H3/2
2
Y = FO+%)—ﬂ%l+%ﬂ%1+%}+ﬂﬂﬁ+{jfﬁ+%)—M“@+%)_3
It
o = (=) e
0 ifc<=1
m, = In(2)¢

iﬂﬂ:—%—by@+v+1

where ~y is Euler’s constant and equal to
v =~ 0.57721566490153286061.
Implementation: scipy.stats.weibull _min

Wrapped Cauchy Distribution

There is one shape parameter ¢ € (0, 1) with support z € [0, 27].

fe) = e
He = o (14 ¢2 —2ccosx)
1 1
ge () = - arctan <1J_FZ tan (;))
re(q) = 2arctan <1 _T_ Z tan (ﬂq))
_ _ ge () 0<e<m
Flaie) = { 1—g.02m —x) m<x< 27
o) = re (q) 0<g¢<j3
Glaic) = {%—rc(l—q) l<g<1

h[X] =log (2m (1 —¢?)).

Implementation: scipy.stats.wrapcauchy

2.12. Statistics (scipy.stats) 201

SciPy Reference Guide, Release 1.8.0

Universal Non-Uniform Random Number Sampling in SciPy

SciPy provides an interface to many universal non-uniform random number generators to sample random variates from
a wide variety of univariate continuous and discrete distributions. Implementations of a fast C library called UNU.RAN
are used for speed and performance. Please look at UNU.RAN’s documentation for an in-depth explanation of these
methods. It is heavily referred to for writing this tutorial and the documentation of all the generators.

Introduction

Random variate generation is the small field of research that deals with algorithms to generate random variates from
various distributions. It is common to assume that a uniform random number generator is available. This is a program
that produces a sequence of independent and identically distributed continuous U(0,1) random variates (i.e. uniform
random variates on the interval (0,1)). Of course, real-world computers can never generate ideal random numbers and
they cannot produce numbers of arbitrary precision but state-of-the-art uniform random number generators come close
to this aim. Thus random variate generation deals with the problem of transforming such a sequence of U(0,1) random
numbers into non-uniform random variates. These methods are universal and work in a black-box fashion.

Some methods to do that are:

* The Inversion method: When the inverse 7~ ! of the cumulative distribution function is known, then random variate
generation is easy. We just generate a uniformly U(0,1) distributed random number U and return X = F~1(U).
As closed form solutions for the inverse are rarely available, one usually needs to rely on approximations of the
inverse (e.g. ndtri, stdtrit). In general, the implementation of special functions is quite slow compared to
the inversion methods in UNU.RAN.

» The Rejection Method: The rejection method, often called acceptance-rejection method, has been suggested by
John von Neumann in 1951". It involves computing an upper bound to the PDF (also called the hat function) and
using the inversion method to generate a random variate, say Y, from this bound. Then a uniform random number
can be drawn between 0 to the value of the upper bound at Y. If this number is less than the PDF at Y, return the
sample otherwise reject it. See TransformedDensityRejection.

» The Ratio-of-Uniforms Method: This is a type of acceptance-rejection method which is uses minimal bounding
rectangles to construct the hat function. See scipy.stats.rvs_ratio_uniforms.

¢ Inversion for Discrete Distributions: The difference compared to the continuous case is that F' is now a step-
function. To realize this in a computer, a search algorithm is used, the simplest of which is sequential search. A
uniform random number is generated from U(0, 1) and probabilities are summed until the cumulative probability
exceeds the uniform random number. The index at which this happens is the required random variate and is
returned.

More details on these algorithms can be found in the appendix of the UNU.RAN user manual.

When generating random variates of a distribution, two factors are important to determine the speed of a generator: the
setup step and the actual sampling. Depending on the situation, different generators can be optimal. For example, if one
repeatedly needs to draw large samples from a given distribution with a fixed shape parameter, a slow setup is acceptable if
the sampling is fast. This is called the fixed parameter case. If one aims to generate samples of a distribution for different
shape parameters (the varying parameter case), an expensive setup that needs to be repeated for each parameter would
lead to very poor performance. In such a situation, a fast setup is crucial to achieve good performance. An overview of
the setup and sampling speed of the different methods is shown in the table below.

! Von Neumann, John. “13. various techniques used in connection with random digits.” Appl. Math Ser 12.36-38 (1951): 3.

202 Chapter 2. SciPy User Guide

http://statmath.wu.ac.at/software/unuran/
http://statmath.wu.ac.at/software/unuran/doc/unuran.html
http://statmath.wu.ac.at/software/unuran/doc/unuran.html#RVG

SciPy Reference Guide, Release 1.8.0

Methods for continuous Required Optional Setup Sampling

distributions Inputs Inputs Speed Speed

TransformedDensityRejec— pdf, dpdf none slow fast

tion

NumericalInverseHermite cdf pdf, dpdf (very) slow (very) fast

NumericalInversePolyno-— pdf cdf (very) slow (very) fast

mial

SimpleRatioUniforms pdf none fast slow
where

* pdf: probability density function
* dpdf: derivative of the pdf

e cdf: cumulative distribution function

Methods for discrete distributions | Required Inputs | Optional Inputs | Setup Speed | Sampling Speed
DiscreteAliasUrn pv pmf slow very fast
DiscreteGuideTable pv pmf slow very fast

where

* pv: probability vector
* pmf: probability mass function

For more details on the generators implemented in UNU.RAN, please refer to? and”.

Basic concepts of the Interface

Every generator needs to be set up before one can start sampling from it. This can be done by instantiating an object
of that class. Most of the generators take a distribution object as input which contains the implementation of required
methods like PDF, CDF, etc. In addition to the distribution object, one can also pass parameters used to set up the
generator. It is also possible to truncate the distributions using a domain parameter. All generators need a stream of
uniform random numbers that are transformed into random variates of the given distribution. This is done by passing a
random_state parameter with a NumPy BitGenerator as the uniform random number generator. random_state
can either be a integer, np.random.Generator, or np.random.RandomState.

Warning: Use of NumPy < 1.19.0 is discouraged as it doesn’t have a fast Cython API for generating uniform random
numbers and might be too slow for practical use.

All the generators have a common rvs method that can be used to draw samples from the given distribution.

An example of this interface is shown below:

>>> from scipy.stats.sampling import TransformedDensityRejection
>>> from math import exp
>>>
>>> class StandardNormal:
def pdf (self, x: float) —-> float:

(continues on next page)

2 UNU.RAN User Manual, https://statmath.wu.ac.at/unuran/doc/unuran.html
3 Leydold, Josef, Wolfgang Hormann, and Halis Sak. “An R Interface to the UNU.RAN Library for Universal Random Variate Generators.”,
https://cran.r-project.org/web/packages/Runuran/vignettes/Runuran.pdf

2.12. Statistics (scipy.stats) 203

https://statmath.wu.ac.at/unuran/doc/unuran.html
https://cran.r-project.org/web/packages/Runuran/vignettes/Runuran.pdf

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

note that the normalization constant isn't required
return exp (-0.5 * x*x)

def dpdf(self, x: float) —-> float:
return —x * exp(-0.5 * x*x)

>>> dist = StandardNormal ()

>>>
>>> urng = np.random.default_rng/()

>>> rng = TransformedDensityRejection(dist, random_state=urng)

As shown in the example, we first initialize a distribution object that contains an implementation of the methods required
by the generator. In our case, we use the TransformedDensityRe ject ion (TDR) method which requires a PDF
and its derivative w.r.t. x (i.e. the variate).

Note: Note that the methods of the distribution (i.e. pdf, dpdf, etc) need not be vectorized. They should accept and
return floats.

Note: One can also pass the SciPy distributions as arguments. However, note that the object doesn’t always have all the
information required by some generators like the derivative of PDF for the TDR method. Relying on SciPy distributions
might also reduce performance due to the vectorization of the methods like pdf and cdf. In both cases, one can
implement a custom distribution object that contains all the required methods and that is not vectorized as shown in the
example above.

In the above example, we have set up an object of the TransformedDensityRejection method to sample from
a standard normal distribution. Now, we can start sampling from our distribution by calling the rvs method:

>>> rng.rvs()

-1.526829048388144

>>> rng.rvs((5, 3))

array ([[2.06206883, 0.15205036, 1.11587367],
[-0.30775562, 0.29879802, -0.61858268],
[-1.01049115, 0.78853694, -0.23060766],
[-0. 0]
[O. 0]

60954752, .29071797, -0.571671827,
9331694 , -0.95605208, 1.72195199]11)

We can also check that the samples are drawn from the correct distribution by visualizing the histogram of the samples:

>>> import matplotlib.pyplot as plt
>>> from scipy.stats import norm
>>> from scipy.stats.sampling import TransformedDensityRejection
>>> from math import exp
>>>
>>> class StandardNormal:
def pdf(self, x: float) —-> float:
note that the normalization constant isn't required
return exp(-0.5 * x*x)
def dpdf(self, x: float) -> float:
return -x * exp(-0.5 * x*x)

>>>

(continues on next page)

204 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> dist = StandardNormal ()
>>> urng np.random.default_rng ()
>>> rng = TransformedDensityRejection (dist, random_state=urng)

>>> rvs = rng.rvs(size=1000)
>>> x = np.linspace(rvs.min()-0.1, rvs.max()+0.1, num=1000)
>>> fx = norm.pdf (x)

>>> plt.plot(x, fx, 'r-', 1lw=2, label="'true distribution')

>>> plt.hist (rvs, bins=20, density=True, alpha=0.8, label='random variates')
>>> plt.xlabel ('x")

>>> plt.ylabel ("PDF (x) ")

>>> plt.title('Transformed Density Rejection Samples')

>>> plt.legend()

>>> plt.show ()

Transformed Density Rejection Samples

0.4
0.3 1
§ - true distribution
E 0.2 I random variates
0.1 4
0.0 -

Note: Please note the difference between the rvs method of the distributions present in scipy.stats and the one
provided by these generators. UNU.RAN generators must be considered independent in a sense that they will generally
produce a different stream of random numbers than the one produced by the equivalent distribution in scipy. stats
for any seed. The implementation of rvs in scipy.stats.rv_continuous usually relies on the NumPy mod-
ule np.random for well-known distributions (e.g., for the normal distribution, the beta distribution) and transformations
of other distributions (e.g., normal inverse Gaussian scipy.stats.norminvgauss and the lognormal scipy.
stats.lognormdistribution). If no specific method is implemented, scipy.stats.rv_continuous defaults
to a numerical inversion method of the CDF that is very slow. As UNU.RAN transforms uniform random numbers differ-
ently than SciPy or NumPy, the resulting stream of RVs is different even for the same stream of uniform random numbers.
For example, the random number stream of SciPy’s scipy.stats.norm and UNURAN’s TransformedDen-—
sityRejection would not be the same even for the same random_state:

>>> from scipy.stats.sampling import norm, TransformedDensityRejection
>>> from copy import copy

>>> dist = StandardNormal ()

>>> urngl = np.random.default_rng/()

>>> urngl_copy = copy (urngl)

>>> rng = TransformedDensityRejection(dist, random_state=urngl)

(continues on next page)

2.12. Statistics (scipy.stats) 205

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> rng.rvs()

-1.526829048388144

>>> norm.rvs (random_state=urngl_copy)
1.3194816698862635

We can pass a domain parameter to truncate the distribution:

>>> rng = TransformedDensityRejection(dist, domain=(-1, 1), random_state=urng)
>>> rng.rvs((5, 3))

array ([[-0.99865691, 0.38104014, 0.31633526],
[0.88433909, -0.45181849, 0.78574461],
[0.3337244 , 0.12924307, 0.404994047,
[-0.51865761, 0.43252222, -0.6514866],
[-0.82666174, 0.71525582, 0.49006743]11)

Invalid and bad arguments are handled either by SciPy or by UNU.RAN. The latter throws a UNURANE r ror that follows
a common format:

UNURANError: [objid: <object id>] <error code>: <reason> => <type of error>
where:

e <object id> isthe ID of the object given by UNU.RAN

e <error code> is an error code representing a type of error.

e <reason> is the reason why the error occurred.

e <type of error> isa short description of the type of error.

The <reason> shows what caused the error. This, by itself, should contain enough information to help debug the error.
In addition, <error id>and <type of error> can be used to investigate different classes of error in UNU.RAN.
A complete list of all the error codes and their descriptions can be found in the Section 8.4 of the UNU.RAN user manual.

An example of an error generated by UNU.RAN is shown below:

UNURANError: [objid: TDR.003] 50 : PDF(x) < 0.! => (generator) (possible)
invalid data

This shows that UNU.RAN failed to initialize an object with ID TDR. 003 because the PDF was < 0. i.e. negative. This
falls under the type “possible invalid data for the generator” and has error code 50.

Warnings thrown by UNU.RAN also follow the same format.

Generators in scipy.stats.sampling

Transformed Density Rejection (TDR)

* Required: T-concave PDF, dPDF
¢ Optional: mode, center
* Speed:

— Set-up: slow

— Sampling: fast

206 Chapter 2. SciPy User Guide

http://statmath.wu.ac.at/software/unuran/doc/unuran.html#Errno

SciPy Reference Guide, Release 1.8.0

TDR is an acceptance/rejection method that uses the concavity of a transformed density to construct hat function and
squeezes automatically. Such PDFs are called T-concave. Currently the following transformations are implemented:

c=0.:T(z) =log(x)
1

Nz

In addition to the PDF, it also requires the derivative of the PDF w.r.t x (i.e. the variate). These functions must be present
as methods of a python object which can then be passed to the generators to instantiate their object. The variant that is
implemented uses squeezes proportional to hat function (').

c=-05:T(x) = (Default)

An example of using this method is shown below:

>>> from scipy.stats.sampling import TransformedDensityRejection
>>> from scipy.stats import norm
>>>
>>> class StandardNormal:
def pdf (self, x):
note that the normalization constant is not required
return np.exp(-0.5 * x*x)
def dpdf(self, x):
return —x * np.exp(-0.5 * x*x)

>>> dist = StandardNormal ()
>>>

>>> urng np.random.default_rng ()
>>> rng = TransformedDensityRejection(dist, random_state=urng)
>>> rng.rvs()

-1.526829048388144

In the above example, we have used the TDR method to sample from the standard normal distribution. Note that we can
drop the normalization constant while computing the PDF. This usually helps speed up the sampling stage. Also, note
that the PDF doesn’t need to be vectorized. It should accept and return a scalar.

It is also possible to evaluate the inverse of the CDF of the hat distribution directly using the ppf_hat method.

>>> rng.ppf_hat (0.5)
-0.00018050266342362759
>>> norm.ppf (0.5)

0.0

>>> u = np.linspace (0, 1, num=10)

>>> rng.ppf_hat (u)

array ([-inf, -1.22227372, -0.7656556 , -0.43135731, -0.14002921,
0.13966423, 0.43096141, 0.76517113, 1.22185606, inf])

>>> norm.ppf (u)

array ([—-inf, -1.22064035, -0.76470967, -0.4307273 , -0.1397103 ,
0.1397103 , 0.4307273 , 0.76470967, 1.22064035, inf])

Apart from the PPF method, other attributes can be accessed to see how well the generator fits the given distribution.
These are:

* ‘squeeze_hat_ratio™ (area below squeeze) / (area below hat) for the generator. It is a number between O and 1.
Closer to 1 means that the hat and the squeeze functions tightly envelop the distribution and fewer PDF evalua-
tions are required to generate samples. The expected number of evaluations of the density is bounded by (1/

I UNU.RAN reference manual, Section 5.3.16, “TDR - Transformed Density Rejection”, http://statmath.wu.ac.at/software/unuran/doc/unuran.
html#TDR

2.12. Statistics (scipy.stats) 207

http://statmath.wu.ac.at/software/unuran/doc/unuran.html#TDR
http://statmath.wu.ac.at/software/unuran/doc/unuran.html#TDR

SciPy Reference Guide, Release 1.8.0

squeeze_hat_ratio) - 1 persample. By default, it is kept above 0.99 but that can be changed by passing
amax_squeeze_hat_ratio parameter.

 ‘hat_area’: area below the hat for the generator.

* ‘squeeze_area’: area below the squeeze for the generator.

>>> rng.squeeze_hat_ratio

0.9947024204884917

>>> rng.hat_area

2.510253139791547

>>> rng.squeeze_area

2.4969548741894876

>>> rng.squeeze_hat_ratio == rng.squeeze_area / rng.hat_area
True

The distribution can be truncated by passing a domain parameter:

>>> urng = np.random.default_rng()

>>> rng = TransformedDensityRejection(dist, domain=[0, 1], random_state=urng)

>>> rng.rvs (10)

array ([0.05452512, 0.97251362, 0.49955877, 0.82789729, 0.33048885,
0.55558548, 0.23168323, 0.13423275, 0.73176575, 0.357397991])

If the domain is not specified, the support method of the dist object is used to determine the domain:

>>> class StandardNormal:
def pdf (self, x):
return np.exp(-0.5 * x*x)
def dpdf(self, x):
return —x * np.exp(-0.5 * x*x)
def support (self):
return —np.inf, np.inf

>>> dist = StandardNormal ()

>>>
>>> urng = np.random.default_rng/()

>>> rng = TransformedDensityRejection(dist, random_state=urng)

>>> rng.rvs (10)

array ([-1.52682905, 2.06206883, 0.15205036, 1.11587367, -0.30775562,
0.29879802, -0.61858268, —-1.01049115, 0.78853694, -0.23060766])

If the dist object does not provide a support method, the domain is assumed to be (-np.inf, np.inf).

To increase squeeze_hat_ratio, pass max_squeeze_hat_ratio

>>> dist = StandardNormal ()

>>> rng = TransformedDensityRejection (dist, max_squeeze_hat_ratio=0.999,
random_state=urng)

>>> rng.squeeze_hat_ratio

0.999364900465214

Let’s see how this affects the callbacks to the PDF method of the distribution:

>>> from copy import copy
>>> class StandardNormal:

(continues on next page)

208 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

def @ init_ (self):
self.callbacks = 0
def pdf(self, x):
self.callbacks += 1
return np.exp(-0.5 * x*x)
def dpdf(self, x):
return -x * np.exp(-0.5 * x*x)

>>> distl = StandardNormal ()

>>> urngl = np.random.default_rng/()

>>> urng2 = copy (urngl)

>>> rngl = TransformedDensityRejection(distl, random_state=urngl)
>>> distl.callbacks # evaluations during setup

139

>>> distl.callbacks = 0 # don't consider evaluations during setup
>>> rvs = rngl.rvs(100000)

>>> distl.callbacks # evaluations during sampling

527

>>> dist2 = StandardNormal ()

>>> # use the same stream of uniform random numbers

>>> rng2 = TransformedDensityRejection(dist2, max_squeeze_hat_ratio=0.999,

random_state=urng2)
>>> dist2.callbacks # evaluations during setup

467

>>> dist2.callbacks = 0 # don't consider evaluations during setup
>>> rvs = rng2.rvs(100000)

>>> dist2.callbacks # evaluations during sampling

84

As we can see, far fewer PDF evaluations are required during sampling when we increase the squeeze_hat_ratio.
The PPF-hat function is also more accurate:

>>> abs (norm.ppf (0.975) - rngl.ppf_hat (0.975))
0.0027054565421578136
>>> abs (norm.ppf (0.975) - rng2.ppf_hat (0.975))

0.00047824084476300044

Though, notice that this comes at the cost of increased PDF evaluations during setup.

For densities with modes not close to 0, it is suggested to set either the mode or the center of the distribution by passing
mode or center parameters. The latter is the approximate location of the mode or the mean of the distribution. This
location provides some information about the main part of the PDF and is used to avoid numerical problems.

>>> # mode = 0 for our distribution
>>> # if exact mode is not available, pass 'center' parameter instead
>>> rng = TransformedDensityRejection (dist, mode=0.)

By default, the method uses 30 construction points to construct the hat. This can be changed by passing a construc—
tion_points parameter which can either be an array of construction points or an integer representing the number of
construction points to use.

>>> rng = TransformedDensityRejection (dist,
construction_points=[-5, 0, 5])

2.12. Statistics (scipy.stats) 209

SciPy Reference Guide, Release 1.8.0

This method accepts many other set-up parameters. See the documentation for an exclusive list. More information of the
parameters and the method can be found in Section 5.3.16 of the UNU.RAN user manual.

Please see™™ 297 1 and? for more details on this method.

References
Discrete Alias Urn (DAU)

* Required: probability vector (PV) or the PMF along with a finite domain
¢ Speed:

— Set-up: slow (linear with the vector-length)

— Sampling: very fast

DAU samples from distributions with arbitrary but finite probability vectors (PV) of length N. The algorithm is based on
an ingenious method by A.J. Walker and requires a table of size (at least) N. It needs one random number and only one
comparison for each generated random variate. The setup time for constructing the tables is O(N).

>>> import numpy as np
>>> from scipy.stats.sampling import DiscreteAliasUrn

>>>

>>> pv = [0.18, 0.02, 0.8]

>>> urng = np.random.default_rng/()

>>> rng = DiscreteAliasUrn (pv, random_state=urng)
>>> rng.rvs ()

0

By default, the probability vector is indexed starting at 0. However, this can be changed by passing a doma in parameter.
When domain is given in combination with the PV, it has the effect of relocating the distribution from (0, len (pv))
to (domain[0],domain[0] + len(pv)).domain[1] isignored in this case.

>>> rng = DiscreteAliasUrn (pv, domain= (10, 13), random_state=urng)
>>> rng.rvs()
12

The method also works when no probability vector but a PMF is given. In that case, a bounded (finite) domain must
also be given either by passing the domain parameter explicitly or by providing a support method in the distribution
object:

>>> class Distribution:
def _ init_ (self, c):
self.c = ¢
def pmf (self, x):
return x**self.c
def support (self):
return (0, 10)

>>> dist = Distribution(2)
>>> rng = DiscreteAliasUrn(dist, random_state=urng)

(continues on next page)

2 Hormann, Wolfgang. “A rejection technique for sampling from T-concave distributions.” ACM Transactions on Mathematical Software (TOMS)
21.2 (1995): 182-193

210 Chapter 2. SciPy User Guide

http://statmath.wu.ac.at/software/unuran/doc/unuran.html#TDR

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>>
10

rng.rvs()

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

import matplotlib.pyplot as plt
from scipy.stats.sampling import DiscreteAliasUrn
class Distribution:
def _ init__ (self, c):
self.c = ¢
def pmf (self, x):
return x**self.c
def support (self):
return (0, 10)

dist = Distribution(2)
urng = np.random.default_rng()

rng = DiscreteAliasUrn(dist, random_state=urng)
rvs = rng.rvs (1000)
fig = plt.figure()

ax = fig.add_subplot (111)

X = np.arange (1, 11)

fx = dist.pmf (x)

fx = fx / fx.sum()

ax.plot(x, fx, 'bo', label='true distribution')

ax.vlines(x, 0, fx, lw=2)

ax.hist (rvs, bins=np.r_[x, 11]1-0.5, density=True, alpha=0.5, color='r',
label="samples'")

ax.set_xlabel('x")

ax.set_ylabel ("PMF (x) ")

ax.set_title('Discrete Alias Urn Samples')

plt.legend()

plt.show ()

Discrete Alias Urn Samples

0.251 @ true distribution
[samples

0.20 A
% 0.15 A

0.10 A

2.12. Statistics (scipy.stats) 211

SciPy Reference Guide, Release 1.8.0

Note: As DiscreteAliasUrnexpects PMF with signature def pmf (self, x: float) —-> float,itfirst
vectorizes the PMF using np.vectorize and then evaluates it over all the points in the domain. But if the PMF is
already vectorized, it is much faster to just evaluate it at each point in the domain and pass the obtained PV instead along
with the domain. For example, pmf methods of SciPy’s discrete distributions are vectorized and a PV can be obtained
by doing:

>>> from scipy.stats import binom

>>> from scipy.stats.sampling import DiscreteAliasUrn

>>> dist = binom (10, 0.2) # distribution object

>>> domain = dist.support() # the domain of your distribution
>>> x = np.arange (domain[0], domain[1] + 1)

>>> pv = dist.pmf (x)

>>> rng = DiscreteAliasUrn (pv, domain=domain)

Domain is required here to relocate the distribution.

The performance can be slightly influenced by setting the size of the used table which can be changed by passing a
urn_factor parameter.

>>> # use a table twice the length of PV.

>>> urn_factor = 2

>>> rng = DiscreteAliasUrn (pv, urn_factor=urn_factor, random_state=urng)
>>> rng.rvs ()

2

Note: It is recommended to keep this parameter under 2.

Please see! and? for more details on this method.

References
Polynomial interpolation based INVersion of CDF (PINV)

¢ Required: PDF
¢ Optional: CDF, mode, center
» Speed:

— Set-up: (very) slow

— Sampling: (very) fast

Polynomial interpolation based INVersion of CDF (PINV) is an inversion method that only requires the density function
to sample from a distribution. It is based on Polynomial interpolation of the PPF and Gauss-Lobatto integration of the
PDF. It provides control over the interpolation error and integration error. Its primary purpose is to provide very fast
sampling which is nearly the same for any given distribution at the cost of moderate to slow setup time. It is the fastest
known inversion method for the fixed-parameter case.

I UNU.RAN reference manual, Section 5.8.2, “DAU - (Discrete) Alias-Urn method”, http://statmath.wu.ac.at/sof tware/unuran/doc/unuran.html#
DAU

2 A.J. Walker (1977). An efficient method for generating discrete random variables with general distributions, ACM Trans. Math. Software 3, pp.
253-256.

212 Chapter 2. SciPy User Guide

http://statmath.wu.ac.at/software/unuran/doc/unuran.html#DAU
http://statmath.wu.ac.at/software/unuran/doc/unuran.html#DAU

SciPy Reference Guide, Release 1.8.0

The inversion method is the simplest and most flexible to sample nonuniform random variates. For a target distribu-
tion with CDF F’ and a uniform random variate U sampled from Uniform(0, 1), a random variate X is generated by
transforming the uniform random variate U using the PPF (inverse CDF) of the distribution:

X =FYU)

This method is suitable for stochastic simulations because of its advantages. Some of the most attractive are:
« It preserves the structural properties of the uniform random number sampler.
* Transforms a uniform random variate U one-to-one into non-uniform random variates X .
 Easy and efficient sampling from truncated distributions.

Unfortunately, the PPF is rarely available in closed form or too slow when available. For many distributions, the CDF is
also not easy to obtain. This method addresses both the shortcomings. The user only has to provide the PDF and optionally
a point near the mode (called “center”) together with the size of the maximal acceptable error. It uses a combination of
an adaptive and a simple Gauss-Lobatto quadrature to obtain the CDF and Newton’s interpolation to obtain the PPF. The
method is not exact, as it only produces random variates of the approximated distribution. Nevertheless, the maximal
tolerated approximation error can be set close to the machine precision. The concept of u-error is used to measure and
control the error. It is defined as:
-1
eu(u) = u—F (F; ' (u)) |

where u € (0,1) is a quantile where we want to measure the error and F, ! is the approximated PPF of the given
distribution.

The maximal u-error is the criterion for approximation errors when calculating the CDF and PPF numerically. The
maximal tolerated u-error of an algorithm is called the u-resolution of the algorithm and denoted by ¢,,:

sup |u—F (F; ' (u) | < eu
u€e(0,1)

The main advantage of the u-error is that it can be easily computed if the CDF is available. We refer to' for a more
detailed discussion.

Also, the method only works for bounded distributions. In case of infinite tails, the ends of the tails are cut off such that
the area under them is less than or equal to 0.05¢,,.

There are some restrictions for the given distribution:

* The support of the distribution (i.e., the region where the PDF is strictly positive) must be connected. In practice this
means, that the region where PDF is “not too small” must be connected. Unimodal densities satisfy this condition.
If this condition is violated then the domain of the distribution might be truncated.

* When the PDF is integrated numerically, then the given PDF must be continuous and should be smooth.
* The PDF must be bounded.

¢ The algorithm has problems when the distribution has heavy tails (as then the inverse CDF becomes very steep at
0 or 1) and the requested u-resolution is very small. E.g., the Cauchy distribution is likely to show this problem
when the requested u-resolution is less then 1.e-12.

Warning: This method does not work for densities with constant parts (e.g. uniform distribution) and segmentation
faults if such a density is passed to the constructor. It is recommended to use the composition method to sample from
such distributions.

Following four steps are carried out by the algorithm during setup:

! Derflinger, Gerhard, Wolfgang Hérmann, and Josef Leydold. “Random variate generation by numerical inversion when only the density is known.”
ACM Transactions on Modeling and Computer Simulation (TOMACS) 20.4 (2010): 1-25.

2.12. Statistics (scipy.stats) 213

https://statmath.wu.ac.at/software/unuran/doc/unuran.html#Composition

SciPy Reference Guide, Release 1.8.0

Computing the end points of the distribution: If a finite support is given, this step is skipped. Otherwise, the ends
of the tails are cut off such that the area under them is less than or equal to 0.05¢,,.

The domain is divided into subintervals to compute the CDF and PPF.

The CDF is computed using Gauss-Lobatto quadrature such that the integration error is at most 0.05/y€,, where
Iy is approximately the total area under the PDF.

The PPF is computed using Newton’s interpolating formula with maximum interpolation error 0.9¢,,.

To initialize the generator to sample from a standard normal distribution, do:

>>>
>>>

>>>
>>>
>>>

from scipy.stats.sampling import NumericalInversePolynomial
class StandardNormal:
def pdf (self, x):
return np.exp(-0.5 * x*x)

dist = StandardNormal ()
urng = np.random.default_rng()
rng = NumericalInversePolynomial (dist, random_state=urng)

The generator has been setup and we can start sampling from our distribution:

>>>

array ([

rng.rvs ((5, 3))

[-1.52449963, 1.31933688, 2.05884468],
[0.48883931, 0.15207903, -0.021507737,
[1.11486463, 1.95449597, -0.30724928]7,
[0.9854643 , 0.29867424, 0.7560304 7],
[-0.61776203, 0.16033378, -1.00933003]11)

We can look at the histogram of the random variates to check how well they fit our distribution:

>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

import matplotlib.pyplot as plt
from scipy.stats import norm
from scipy.stats.sampling import NumericalInversePolynomial
class StandardNormal:
def pdf (self, x):
return np.exp(-0.5 * x*x)

dist = StandardNormal ()
urng = np.random.default_rng/()

rng = NumericallInversePolynomial (dist, random_state=urng)
rvs = rng.rvs (10000)

x = np.linspace(rvs.min()-0.1, rvs.max()+0.1, num=10000)
fx = norm.pdf (x)

plt.plot (x, fx, "r-", label="pdf")

plt.hist (rvs, bins=50, density=True, alpha=0.8, label="rvs")
plt.xlabel ("x")

plt.ylabel ("PDF (x)")

plt.title("Samples drawn using PINV method.")

plt.legend()

plt.show ()

The maximum tolerated error (i.e. u-resolution) can be changed by passing the u_resolution keyword during ini-
tialization:

214

Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Samples drawn using PINV method.

0.4 - odf
Bl rvs
0.3
x
& 0.2 1
o
0.1 4
0.0 -
-4 -2 0 2 4
X

>>> rng = NumericalInversePolynomial (dist, u_resolution=le-12,
random_state=urng)

This leads to a more accurate approximation of the PPF and the generated RVs follow the exact distribution more closely.
Although, note that it comes at the cost of an expensive setup.

The setup time mainly depends on the number of times the PDF is evaluated. It is more costly for PDFs that are difficult
to evaluate. Note that we can ignore the normalization constant to speed up the evaluations of the PDF. PDF evaluations
increase during setup for small values of u_resolution.

>>> from scipy.stats.sampling import NumericalInversePolynomial
>>> class StandardNormal:
def _ _init__ (self):
self.callbacks = 0
def pdf (self, x):
self.callbacks += 1
return np.exp(-0.5 * x*x)

>>> dist = StandardNormal ()
>>> urng = np.random.default_rng()
>>> # u_resolution = 10"-8

>>> # => Jless PDF evaluations required

>>> # => faster setup

>>> rng = NumericallInversePolynomial (dist, u_resolution=1e-8,

B random_state=urng)

>>> dist.callbacks

4095

>>> dist.callbacks = 0 # reset the number of callbacks

>>> # u_resolution = 107-10 (default)

>>> # => more PDF evaluations required

>>> # => slow setup

>>> rng = NumericallInversePolynomial (dist, u_resolution=1e-10,
random_state=urng)

>>> dist.callbacks

(continues on next page)

2.12. Statistics (scipy.stats) 215

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

11454
>>> dist.callbacks = 0 # reset the number of callbacks
>>> # u_resolution = 10"-12

>>> # => lots of PDF evaluations required

>>> # => very slow setup

>>> rng = NumericalInversePolynomial (dist, u_resolution=le-12,
c.. random_state=urng)

13902

As we can see, the number of PDF evaluations required is very high and a fast PDF is critical to the algorithm. Though, this
helps reduce the number of subintervals required to achieve the error goal which saves memory and makes sampling fast.
NumericalInverseHermiteisasimilar inversion method that inverts the CDF based on Hermite interpolation and
provides control over the maximum tolerated error via u-resolution. But it makes use of a lot more intervals compared to
NumericallnversePolynomial:

>>> from scipy.stats.sampling import NumericallInverseHermite

>>> # NumericallnverseHermite accepts a tol parameter to set the
>>> # u-resolution of the generator.

>>> rng_hermite = NumericalInverseHermite (norm(), tol=le-12)

>>> rng_hermite.intervals

3000

>>> rng_poly = NumericalInversePolynomial (norm(), u_resolution=le-12)
>>> rng_poly.intervals

252

When exact CDF of a distribution is available, one can estimate the u-error achieved by the algorithm by calling the
u_error method:

>>> from scipy.special import ndtr
>>> class StandardNormal:
def pdf (self, x):
return np.exp(-0.5 * x*x)
def cdf (self, x):
return ndtr (x)

>>> dist = StandardNormal ()

>>> urng np.random.default_rng()

>>> rng = NumericalInversePolynomial (dist, random_state=urng)
>>> rng.u_error (sample_size=100_000)

UError (max_error=8.785949745515609e-11, mean_absolute_error=2.
—~9307548109436816e-11)

u_error runs a monte carlo simulation with a given number of samples to estimate the u-error. In the above example,
100,000 samples are used by the simulation to approximate the u-error. It returns the maximum u-error (max_error)
and the mean absolute u-error (mean_absolute_error) in a UError namedtuple. As we can see, max_error
is below the default u_resolution (1e-10).

It is also possible to evaluate the PPF of the given distribution once the generator is initialized:

>>> rng.ppf (0.975)
1.959963985701268
>>> norm.ppf (0.975)
1.959963984540054

216 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

We can use this, for example, to check the maximum and mean absolute u-error:

>>> u = np.linspace(0.001, 0.999, num=1_000_000)
>>> u_errors = np.abs(u - dist.cdf (rng.ppf(u)))
>>> y_errors.max()

8.78600525666684e-11

>>> yu_errors.mean ()

2.9321444940323206e-11

The approximate PPF method provided by the generator is much faster to evaluate than the exact PPF of the distribution.

During setup, a table of CDF points is stored that can be used to approximate the CDF once the generator has been
created:

>>> rng.cdf (1.959963984540054)
0.9750000000042454

>>> norm.cdf (1.959963984540054)
0.975

We can use this to check if the integration error while computing the CDF exceeds 0.051pe,. Here Iy is v/27 (the
normalization constant for the standard normal distribution):

>>> x = np.linspace(-10, 10, num=100_000)

>>> x_error = np.abs(dist.cdf(x) - rng.cdf(x))
>>> x_error.max ()

4.506062190046123e-12

>>> I0 = np.sqrt(2*np.pi)

>>> max_integration_error = 0.05 * I0 * 1e-10
>>> x_error.max () <= max_integration_error
True

The CDF table computed during setup is used to evaluate the CDF and only some further fine-tuning is required. This
reduces the calls to the PDF but as the fine-tuning step uses the simple Gauss-Lobatto quadrature, the PDF is called
several times, slowing down the computation.

References
Discrete Guide Table (DGT)

» Required: probability vector (PV) or the PMF along with a finite domain
e Speed:
— Set-up: slow (linear with the vector-length)
— Sampling: very fast
DGT samples from arbitrary but finite probability vectors. Random numbers are generated by the inversion method, i.e.
1. Generate a random number U ~ U(0,1).
2. Find smallest integer I such that F(I) = P(X<=I) >=U.

Step (2) is the crucial step. Using sequential search requires O(E(X)) comparisons, where E(X) is the expectation of the
distribution. Indexed search, however, uses a guide table to jump to some I’ <=1 near I to find X in constant time. Indeed
the expected number of comparisons is reduced to 2, when the guide table has the same size as the probability vector

2.12. Statistics (scipy.stats) 217

SciPy Reference Guide, Release 1.8.0

(this is the default). For larger guide tables this number becomes smaller (but is always larger than 1), for smaller tables
it becomes larger.

On the other hand the setup time for guide table is O(N), where N denotes the length of the probability vector (for size 1
no preprocessing is required). Moreover, for very large guide tables memory effects might even reduce the speed of the
algorithm. So we do not recommend to use guide tables that are more than three times larger than the given probability
vector. If only a few random numbers have to be generated, (much) smaller table sizes are better. The size of the guide
table relative to the length of the given probability vector can be set by the guide_factor parameter:

>>> import numpy as np
>>> from scipy.stats.sampling import DiscreteGuideTable

>>>
>>> pv = [0.18, 0.02, 0.8]
>>> urng = np.random.default_rng/()

>>> rng = DiscreteGuideTable (pv, random_state=urng)
>>> rng.rvs()
2

By default, the probability vector is indexed starting at 0. However, this can be changed by passing a doma in parameter.
When domain is given in combination with the PV, it has the effect of relocating the distribution from (0, len (pv))
to (domain[0], domain[0] + len(pv)).domain[1] isignored in this case.

>>> rng = DiscreteGuideTable (pv, random_state=urng, domain= (10, 13))
>>> rng.rvs()
10

The method also works when no probability vector but a PMF is given. In that case, a bounded (finite) domain must
also be given either by passing the domain parameter explicitly or by providing a support method in the distribution
object:

>>> class Distribution:
def _ init__ (self, c):
self.c = ¢
def pmf (self, x):
return x ** self.c
def support (self):
return 0, 10

>>> dist = Distribution(2)

>>> rng = DiscreteGuideTable (dist, random_state=urng)
>>> rng.rvs()

9

Note: As DiscreteGuideTable expects PMF with signature def pmf (self, x: float) -> float,it
first vectorizes the PMF using np . vect orize and then evaluates it over all the points in the domain. But if the PMF is
already vectorized, it is much faster to just evaluate it at each point in the domain and pass the obtained PV instead along
with the domain. For example, pmf methods of SciPy’s discrete distributions are vectorized and a PV can be obtained
by doing:

>>> from scipy.stats import binom

>>> from scipy.stats.sampling import DiscreteGuideTable

>>> dist = binom (10, 0.2) # distribution object

>>> domain = dist.support () # the domain of your distribution
>>> x = np.arange (domain[0], domain[l1l] + 1)

(continues on next page)

218 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> pv = dist.pmf (x)
>>> rng = DiscreteGuideTable (pv, domain=domain)

Domain is required here to relocate the distribution

The size of the guide table relative to the probability vector may be set using the guide_factor parameter. Larger
guide tables result in faster generation time but require a more expensive setup.

>>> guide_factor = 2

>>> rng = DiscreteGuideTable (pv, random_state=urng, guide_factor=guide_factor)
>>> rng.rvs()

2

Unfortunately, the PPF is rarely available in closed form or too slow when available. The user only has to provide the
probability vector and the PPF (inverse CDF) can be evaluated using ppf method. This method calculates the (exact)
PPF of the given distribution.

For example to calculate the PPF of a binomial distribution with n = 4 and p = 0.1: we can set up a guide table as
follows:

>>>n, p =4, 0.1

>>> dist stats.binom(n, p)

>>> rng = DiscreteGuideTable (dist, random_state=42)
>>> rng.ppf (0.5)

0.0

Please see! and® for more details on this method.

References
Hermite interpolation based INVersion of CDF (HINV)

¢ Required: CDF

* Optional: PDF, dPDF

* Speed:
— Set-up: (very) slow
— Sampling: (very) fast

HINV is a variant of numerical inversion, where the inverse CDF is approximated using Hermite interpolation, i.e., the
interval [0,1] is split into several intervals and in each interval the inverse CDF is approximated by polynomials constructed
by means of values of the CDF and PDF at interval boundaries. This makes it possible to improve the accuracy by splitting
a particular interval without recomputations in unaffected intervals. Three types of splines are implemented: linear, cubic,
and quintic interpolation. For linear interpolation only the CDF is required. Cubic interpolation also requires PDF and
quintic interpolation PDF and its derivative.

These splines have to be computed in a setup step. However, it only works for distributions with bounded domain;
for distributions with unbounded domain the tails are chopped off such that the probability for the tail regions is small
compared to the given u-resolution.

I ' UNU.RAN reference manual, Section 5.8.4, “DGT - (Discrete) Guide Table method (indexed search)” https://statmath.wu.ac.at/unuran/doc/
unuran.html#DGT
2 H.C. Chen and Y. Asau (1974). On generating random variates from an empirical distribution, AIIE Trans. 6, pp. 163-166.

2.12. Statistics (scipy.stats) 219

https://statmath.wu.ac.at/unuran/doc/unuran.html#DGT
https://statmath.wu.ac.at/unuran/doc/unuran.html#DGT

SciPy Reference Guide, Release 1.8.0

The method is not exact, as it only produces random variates of the approximated distribution. Nevertheless, the maximal
numerical error in “u-direction” (i.e. |U - CDF (X) | where X is the approximate percentile corresponding to the
quantile Ui.e. X = approx_ppf (U)) can be set to the required resolution (within machine precision). Notice that
very small values of the u-resolution are possible but may increase the cost for the setup step.

NumericalInverseHermite approximates the inverse of a continuous statistical distribution’s CDF with a Hermite
spline. Order of the hermite spline can be specified by passing the order parameter.

As described in', it begins by evaluating the distribution’s PDF and CDF at a mesh of quantiles x within the distribution’s
support. It uses the results to fit a Hermite spline H such that H (p) == x, where p is the array of percentiles corresponding
with the quantiles x. Therefore, the spline approximates the inverse of the distribution’s CDF to machine precision at the
percentiles p, but typically, the spline will not be as accurate at the midpoints between the percentile points:

p.mid = (pl:-1]1 + pl[l:])/2

so the mesh of quantiles is refined as needed to reduce the maximum “u-error”:

u_error = np.max(np.abs(dist.cdf (H(p_mid)) - p_mid))

below the specified tolerance u_resolution. Refinement stops when the required tolerance is achieved or when the number
of mesh intervals after the next refinement could exceed the maximum allowed number of intervals (100000).

>>> from scipy.stats.sampling import NumericalInverseHermite
>>> from scipy.stats import norm, genexpon
>>> from scipy.special import ndtr

To create a generator to sample from the standard normal distribution, do:

>>> class StandardNormal:
def pdf (self, x):
return 1/np.sqrt (2*np.pi) * np.exp(-x**2 / 2)
def cdf (self, x):
return ndtr (x)

>>> dist = StandardNormal ()

>>> urng = np.random.default_rng()
>>> rng = NumericallInverseHermite (dist, random_state=urng)

The NumericalInverseHermite has a method that approximates the PPF of the distribution.

>>> rng = NumericallInverseHermite (dist)

>>> p = np.linspace(0.01, 0.99, 99) # percentiles from 1% to 99%
>>> np.allclose(rng.ppf (p), norm.ppf (p))

True

Depending on the implementation of the distribution’s random sampling method, the random variates generated may be
nearly identical, given the same random state.

>>> dist = genexpon(9, 16, 3)

>>> rng = NumericallInverseHermite (dist)

>>> # ‘seed’ ensures identical random streams are used by each ‘rvs' method
>>> seed = 500072020

>>> rvsl = dist.rvs(size=100, random_state=np.random.default_rng(seed))

(continues on next page)

! Hormann, Wolfgang, and Josef Leydold. “Continuous random variate generation by fast numerical inversion.” ACM Transactions on Modeling
and Computer Simulation (TOMACS) 13.4 (2003): 347-362.

220 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> rvs2 = rng.rvs(size=100, random_state=np.random.default_rng(seed))
>>> np.allclose(rvsl, rvs2)
True

To check that the random variates closely follow the given distribution, we can look at its histogram:

>>> dist = StandardNormal ()

>>> urng np.random.default_rng()

>>> rng = NumericallInverseHermite (dist, random_state=urng)
>>> rvs = rng.rvs (10000)

>>> x = np.linspace(rvs.min()-0.1, rvs.max()+0.1, 1000)
>>> fx = norm.pdf (x)

>>> plt.plot(x, fx, 'r-', lw=2, label='true distribution')
>>> plt.hist (rvs, bins=20, density=True, alpha=0.8, label='random variates')
>>> plt.xlabel ('x")

>>> plt.ylabel ('"PDF (x) ")

>>> plt.title ('Numerical Inverse Hermite Samples')

>>> plt.legend()

>>> plt.show ()

Numerical Inverse Hermite Samples

0.4
0.3 A
2 — true distribution
[N
o 0.21 mmm random variates
0.1 4
0.0 -
-4 -2 0 2 4
X

Given the derivative of the PDF w.r.t the variate (i.e. x), we can use quintic Hermite interpolation to approximate the
PPF by passing the order parameter:

>>> class StandardNormal:
def pdf (self, x):
return 1/np.sqgrt (2*np.pi) * np.exp(-x**2 / 2)
def dpdf(self, x):
return -1/np.sqrt(2*np.pi) * x * np.exp(-x**2 / 2)
def cdf(self, x):
return ndtr (x)

>>> dist = StandardNormal ()
>>> urng = np.random.default_rng/()

(continues on next page)

2.12. Statistics (scipy.stats) 221

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> rng = NumericallInverseHermite (dist, order=5, random_state=urng)

Higher orders result in a fewer number of intervals:

>>> rng3 NumericalInverseHermite (dist, order=3)

>>> rng5 = NumericallnverseHermite (dist, order=5)
>>> rng3.intervals, rng5.intervals
(3000, 522)

The u-error can be estimated by calling the u_error method. It runs a small Monte-Carlo simulation to estimate the
u-error. By default, 100,000 samples are used. This can be changed by passing the sample_size argument:

>>> rngl = NumericallInverseHermite (dist, u_resolution=1e-10)

>>> rngl.u_error (sample_size=1000000) # uses one million samples
UError (max_error=9.53167544892608e-11, mean_absolute_error=2.
—2450136432146864e-11)

This returns a namedtuple which contains the maximum u-error and the mean absolute u-error.

The u-error can be reduced by decreasing the u-resolution (maximum allowed u-error):

>>> rng2 = NumericallInverseHermite (dist, u_resolution=1le-13)
>>> rng2.u_error (sample_size=1000000)

UError (max_error=9.32027892364129e-14, mean_absolute_error=1.
5194172675685075e-14)

Note that this comes at the cost of computation time as a result of the increased setup time and number of intervals.

>>> rngl.intervals

1022

>>> rng2.intervals

5687

>>> from timeit import timeit

>>> f = lambda: NumericalInverseHermite (dist, u_resolution=1e-10)
>>> timeit (£, number=1)

0.017409582000254886 # may vary

>>> f = lambda: NumericalInverseHermite (dist, u_resolution=le-13)
>>> timeit (f, number=1)

0.08671202100003939 # may vary

Seel22¢220. 1 and? for more details on this method.

2 UNU.RAN reference manual, Section 5.3.5, “HINV - Hermite interpolation based IN Version of CDF”, https://statmath.wu.ac.at/software/unuran/
doc/unuran.html#HINV

222 Chapter 2. SciPy User Guide

https://statmath.wu.ac.at/software/unuran/doc/unuran.html#HINV
https://statmath.wu.ac.at/software/unuran/doc/unuran.html#HINV

SciPy Reference Guide, Release 1.8.0

References
Simple Ratio-of-Uniforms (SROU)

* Required: PDF, area under PDF if different than 1
¢ Optional: mode, CDF at mode
e Speed:

— Set-up: fast

— Sampling: slow

SROU is based on the ratio-of-uniforms method that uses universal inequalities for constructing a (universal) bounding
rectangle. It works for T-concave distributions with T(x) = -1/sqrt(x).

>>> from scipy.stats.sampling import SimpleRatioUniforms

Suppose we have the normal distribution:

>>> class StdNorm:
def pdf (self, x):
return np.exp(-0.5 * x**2)

Notice that the PDF doesn’t integrate to 1. We can either pass the exact area under the PDF during initialization of the
generator or an upper bound to the exact area under the PDF. Also, it is recommended to pass the mode of the distribution
to speed up the setup:

>>> urng = np.random.default_rng/()

>>> dist = StdNorm()

>>> rng = SimpleRatioUniforms (dist, mode=0,
pdf_area=np.sqgrt (2*np.pi),
random_state=urng)

Now, we can use the rvs method to generate samples from the distribution:

>>> rvs = rng.rvs(10)

If the CDF at mode is avaialble, it can be set to improve the performace of rvs:

>>> from scipy.stats import norm

>>> rng = SimpleRatioUniforms (dist, mode=0,
pdf_area=np.sqgrt (2*np.pi),
cdf_at_mode=norm.cdf (0),
ce random_state=urng)

>>> rvs = rng.rvs (1000)

We can check that the samples are from the given distribution by visualizing its histogram:

>>> from scipy.stats.sampling import SimpleRatioUniforms
>>> from scipy.stats import norm
>>> import matplotlib.pyplot as plt
>>> class StdNorm:
def pdf (self, x):
return np.exp (0.5 * x**2)

(continues on next page)

2.12. Statistics (scipy.stats) 223

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> urng = np.random.default_rng/()

>>> dist = StdNorm()

>>> rng = SimpleRatioUniforms (dist, mode=0,
pdf_area=np.sqrt (2*np.pi),
cdf_at_mode=norm.cdf (0),

. random_state=urng)

>>> rvs = rng.rvs (1000)
>>> x = np.linspace(rvs.min()-0.1, rvs.max()+0.1, 1000)

>>> fx = 1/np.sqrt (2*np.pi) * dist.pdf (x)

>>> fig, ax = plt.subplots()

>>> ax.plot (x, fx, 'r-', lw=2, label='true distribution')

>>> ax.hist (rvs, bins=10, density=True, alpha=0.8, label='random variates')
>>> ax.set_xlabel ('x")

>>> ax.set_ylabel ("PDF (x) ")

>>> ax.set_title('Simple Ratio-of-Uniforms Samples')

>>> ax.legend()

>>> plt.show ()

Simple Ratio-of-Uniforms Samples

0.4

— true distribution
I random variates

PDF(x)

The main advantage of the method is a fast setup. This can be beneficial if one repeatedly needs to generate small
to moderate samples of a distribution with different shape parameters. In such a situation, the setup step of sam-
pling. NumericallnverseHermite or sampling. NumericallnversePolynomial will lead to poor performance. As an example,
assume we are interested to generate 100 samples for the Gamma distribution with 1000 different shape parameters given
by np.arange(1.5, 5, 1000).

>>> import math
>>> class GammaDist:
def _ init_ (self, p):
self.p = p
def pdf (self, x):
return x** (self.p-1) * np.exp(-x)

>>> urng = np.random.default_rng()

(continues on next page)

224 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> p = np.arange(l.5, 5, 1000)
>>> res = np.empty ((1000, 100))
>>> for i in range(1000):
dist = GammaDist (p[i])
rng = SimpleRatioUniforms (dist, mode=p[i]-1,
pdf_area=math.gamma (p[i]),
random_state=urng)
with np.suppress_warnings () as sup:
.. sup.filter (RuntimeWarning, "invalid value encountered in double_
—~scalars™)
sup.filter (RuntimeWarning, "overflow encountered in exp")
res[i] = rng.rvs(100)

See! 2, and’ for more details.

References

References

2.12.2 Random variables

There are two general distribution classes that have been implemented for encapsulating continuous random variables
and discrete random variables. Over 80 continuous random variables (RVs) and 10 discrete random variables have been
implemented using these classes. Besides this, new routines and distributions can be easily added by the end user. (If you
create one, please contribute it.)

All of the statistics functions are located in the sub-package scipy . st at s and afairly complete listing of these functions
can be obtained using info (stats). The list of the random variables available can also be obtained from the docstring
for the stats sub-package.

In the discussion below, we mostly focus on continuous RVs. Nearly everything also applies to discrete variables, but we
point out some differences here: Specific points for discrete distributions.

In the code samples below, we assume that the scipy. stats package is imported as

>>> from scipy import stats

and in some cases we assume that individual objects are imported as

>>> from scipy.stats import norm

I UNU.RAN reference manual, Section 5.3.16, “SROU - Simple Ratio-of-Uniforms method”, http://statmath.wu.ac.at/software/unuran/doc/
unuran.html#SROU

2 Leydold, Josef. “A simple universal generator for continuous and discrete univariate T-concave distributions.” ACM Transactions on Mathematical
Software (TOMS) 27.1 (2001): 66-82

3 Leydold, Josef. “Short universal generators via generalized ratio-of-uniforms method.” Mathematics of Computation 72.243 (2003): 1453-1471

2.12. Statistics (scipy.stats) 225

http://statmath.wu.ac.at/software/unuran/doc/unuran.html#SROU
http://statmath.wu.ac.at/software/unuran/doc/unuran.html#SROU

SciPy Reference Guide, Release 1.8.0

Getting help

First of all, all distributions are accompanied with help functions. To obtain just some basic information, we print the
relevant docstring: print (stats.norm.__doc__).

To find the support, i.e., upper and lower bounds of the distribution, call:

>>> print ('bounds of distribution lower: , upper: ' % norm.support ())
bounds of distribution lower: —-inf, upper: inf

We can list all methods and properties of the distribution with dir (norm). As it turns out, some of the methods are
private, although they are not named as such (their names do not start with a leading underscore), for example veccdf,
are only available for internal calculation (those methods will give warnings when one tries to use them, and will be
removed at some point).

To obtain the real main methods, we list the methods of the frozen distribution. (We explain the meaning of a frozen
distribution below).

>>> rv = norm()

>>> dir (rv) # reformatted

['"_class_ ', '__delattr__', '__dict__"', '__dir__ ', '_doc_', '"_eq "',
'__format_ ', '__ge ', '__getattribute__ ', '_gt__ ', '__hash__ ',
' init_ ', '_le_ ', '_ 1t ', ' _module_ ', ' _ne_ ', ' new_ "',
' _reduce__ ', '__reduce_ex__ ', '_repr_ ', '__setattr__', '__sizeof__ ',
' str__ ', '__subclasshook__', '_ weakref__', 'a', 'args', 'b', 'cdf',

'dist', 'entropy', 'expect', 'interval', 'isf', 'kwds', 'logcdf',
'logpdf', 'logpmf', 'logsf', 'mean', 'median', 'moment', 'pdf', 'pmf',
'epf', 'random_state', 'rvs', 'sf', 'stats', 'std', 'var']

Finally, we can obtain the list of available distribution through introspection:

>>> dist_continu = [d for d in dir(stats) if
. isinstance (getattr(stats, d), stats.rv_continuous)]
>>> dist_discrete = [d for d in dir(stats) if

isinstance (getattr(stats, d), stats.rv_discrete)]
>>> print ('number of continuous distributions: ' % len(dist_continu))
number of continuous distributions: 104
>>> print ('number of discrete distributions: ' % len(dist_discrete))
number of discrete distributions: 19

Common methods

The main public methods for continuous RVs are:
* rvs: Random Variates
* pdf: Probability Density Function
e cdf: Cumulative Distribution Function
e sf: Survival Function (1-CDF)
* ppf: Percent Point Function (Inverse of CDF)
e isf: Inverse Survival Function (Inverse of SF)

e stats: Return mean, variance, (Fisher’s) skew, or (Fisher’s) kurtosis

226 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

e moment: non-central moments of the distribution

Let’s take a normal RV as an example.

>>> norm.cdf (0)
0.5

To compute the cdf at a number of points, we can pass a list or a numpy array.

>>> norm.cdf ([-1., 0, 11)

array ([0.15865525, 0.5, 0.841344757)
>>> import numpy as np

>>> norm.cdf (np.array([-1., 0, 11))
array ([0.15865525, 0.5, 0.841344757)

Thus, the basic methods, such as pdf, cdf, and so on, are vectorized.

Other generally useful methods are supported too:

>>> norm.mean (), norm.std(), norm.var ()
(0.0, 1.0, 1.0)

>>> norm.stats (moments="mv")

(array (0.0), array(1.0))

To find the median of a distribution, we can use the percent point function pp £, which is the inverse of the cdf:

>>> norm.ppf (0.5)
0.0

To generate a sequence of random variates, use the size keyword argument:

>>> norm.rvs (size=3)
array ([-0.35687759, 1.34347647, —-0.117105317) # random

Don’t think that norm. rvs (5) generates S variates:

>>> norm.rvs (5)
5.471435163732493 # random

Here, 5 with no keyword is being interpreted as the first possible keyword argument, 1oc, which is the first of a pair of
keyword arguments taken by all continuous distributions. This brings us to the topic of the next subsection.

Random number generation

Drawing random numbers relies on generators from numpy . random package. In the examples above, the specific
stream of random numbers is not reproducible across runs. To achieve reproducibility, you can explicitly seed a random
number generator. In NumPy, a generator is an instance of numpy . random.Generator. Here is the canonical way
to create a generator:

>>> from numpy.random import default_rng
>>> rng = default_rng()

And fixing the seed can be done like this:

>>> # do NOT copy this value
>>> rng = default_rng(301439351238479871608357552876690613766)

2.12. Statistics (scipy.stats) 227

https://numpy.org/devdocs/reference/random/index.html#module-numpy.random
https://numpy.org/devdocs/reference/random/generator.html#numpy.random.Generator

SciPy Reference Guide, Release 1.8.0

Warning: Do not use this number or common values such as 0. Using just a small set of seeds to instantiate larger
state spaces means that there are some initial states that are impossible to reach. This creates some biases if everyone
uses such values. A good way to get a seed is to use a numpy . random. SeedSequence:

>>> from numpy.random import SeedSequence
>>> print (SeedSequence () .entropy)
301439351238479871608357552876690613766 # random

The random_state parameter in distributions accepts an instance of numpy . random. Generator class, or an integer,
which is then used to seed an internal Generator object:

>>> norm.rvs (size=5, random_state=rng)
array ([0.47143516, -1.19097569, 1.43270697, -0.3126519 , -0.72058873]) #o
—random

For further info, see NumPy’s documentation.

To learn more about the random number samplers implemented in SciPy, see non-uniform random number sampling
tutorial and quasi monte carlo tutorial

Shifting and scaling

All continuous distributions take 1oc and scale as keyword parameters to adjust the location and scale of the distri-
bution, e.g., for the standard normal distribution, the location is the mean and the scale is the standard deviation.

>>> norm.stats (loc=3, scale=4, moments="mv")
(array (3.0), array(16.0))

In many cases, the standardized distribution for a random variable X is obtained through the transformation (X - loc)
/ scale. The default values are 1oc = 0 and scale = 1.

Smart use of 1oc and scale can help modify the standard distributions in many ways. To illustrate the scaling further,
the cdf of an exponentially distributed RV with mean 1/ is given by

F(z) =1—exp(—Ax)

By applying the scaling rule above, it can be seen that by taking scale = 1./lambda we get the proper scale.

>>> from scipy.stats import expon
>>> expon.mean (scale=3.)
3.0

Note: Distributions that take shape parameters may require more than simple application of Loc and/or scale to
achieve the desired form. For example, the distribution of 2-D vector lengths given a constant vector of length R perturbed
by independent N(0, ¢2) deviations in each component is rice(R /o, scale= o). The first argument is a shape parameter
that needs to be scaled along with x.

The uniform distribution is also interesting:

>>> from scipy.stats import uniform
>>> uniform.cdf ([0, 1, 2, 3, 4, 5], loc=1, scale=4)
array ([O. , 0. , 0.25, 0.5, 0.75, 1. 1)

228 Chapter 2. SciPy User Guide

https://numpy.org/devdocs/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence
https://numpy.org/devdocs/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/stable/reference/random/index.html

SciPy Reference Guide, Release 1.8.0

Finally, recall from the previous paragraph that we are left with the problem of the meaning of norm.rvs (5). As it
turns out, calling a distribution like this, the first argument, i.e., the 5, gets passed to set the 1 oc parameter. Let’s see:

>>> np.mean (norm.rvs (5, size=500))
5.0098355106969992 # random

Thus, to explain the output of the example of the last section: norm.rvs (5) generates a single normally distributed
random variate with mean 1 oc=5, because of the default size=1.

We recommend that you set 1oc and scale parameters explicitly, by passing the values as keywords rather than as
arguments. Repetition can be minimized when calling more than one method of a given RV by using the technique of
Freezing a Distribution, as explained below.

Shape parameters

While a general continuous random variable can be shifted and scaled with the 1oc and scale parameters, some
distributions require additional shape parameters. For instance, the gamma distribution with density

)‘()‘I)ail —Az

y(w,a) = WE)

requires the shape parameter a. Observe that setting A can be obtained by setting the scale keyword to 1/A.

Let’s check the number and name of the shape parameters of the gamma distribution. (We know from the above that this
should be 1.)

>>> from scipy.stats import gamma
>>> gamma.numargs

1

>>> gamma.shapes

lal

Now, we set the value of the shape variable to 1 to obtain the exponential distribution, so that we compare easily whether
we get the results we expect.

>>> gamma (1, scale=2.).stats (moments="mv")
(array(2.0), array(4.0))

Notice that we can also specify shape parameters as keywords:

>>> gamma (a=1, scale=2.).stats (moments="mv")
(array(2.0), array(4.0))

Freezing a distribution

Passing the 1oc and scale keywords time and again can become quite bothersome. The concept of freezing a RV is
used to solve such problems.

>>> rv = gamma (1, scale=2.)

By using rv we no longer have to include the scale or the shape parameters anymore. Thus, distributions can be used in
one of two ways, either by passing all distribution parameters to each method call (such as we did earlier) or by freezing
the parameters for the instance of the distribution. Let us check this:

2.12. Statistics (scipy.stats) 229

SciPy Reference Guide, Release 1.8.0

>>> rv.mean (), rv.std()
(2.0, 2.0)

This is, indeed, what we should get.

Broadcasting

The basic methods pd £, and so on, satisfy the usual numpy broadcasting rules. For example, we can calculate the critical
values for the upper tail of the t distribution for different probabilities and degrees of freedom.

>>> stats.t.isf([0.1, 0.05, 0.01], [[10], [1111)
array ([[1.37218364, 1.81246112, 2.7637694¢6],
[1.36343032, 1.79588482, 2.71807918]1])

Here, the first row contains the critical values for 10 degrees of freedom and the second row for 11 degrees of freedom
(d.o.f.). Thus, the broadcasting rules give the same result of calling isf twice:

>>> stats.t.isf ([0.1, 0.05, 0.01]1, 10)
array ([1.37218364, 1.81246112, 2.76376946])
>>> stats.t.isf([0.1, 0.05, 0.0171, 11)
array ([1.36343032, 1.79588482, 2.71807918])

If the array with probabilities, i.e., [0.1, 0.05, 0.01] and the array of degrees of freedomi.e.,, [10, 11, 12],
have the same array shape, then element-wise matching is used. As an example, we can obtain the 10% tail for 10 d.o.f.,
the 5% tail for 11 d.o.f. and the 1% tail for 12 d.o.f. by calling

>>> stats.t.isf([0.1, 0.05, 0.011, [10, 11, 121)
array ([1.37218364, 1.79588482, 2.68099799])

Specific points for discrete distributions

Discrete distributions have mostly the same basic methods as the continuous distributions. However pdf is replaced by
the probability mass function pmf, no estimation methods, such as fit, are available, and scale is not a valid keyword
parameter. The location parameter, keyword 1oc, can still be used to shift the distribution.

The computation of the cdf requires some extra attention. In the case of continuous distribution, the cumulative distri-
bution function is, in most standard cases, strictly monotonic increasing in the bounds (a,b) and has, therefore, a unique
inverse. The cdf of a discrete distribution, however, is a step function, hence the inverse cdf, i.e., the percent point
function, requires a different definition:

ppf(g) = min{x : cdf(x) >= g, x integer}

For further info, see the docs here.

We can look at the hypergeometric distribution as an example

>>> from scipy.stats import hypergeom
>>> [M, n, N] = [20, 7, 12]

If we use the cdf at some integer points and then evaluate the ppf at those cdf values, we get the initial integers back, for
example

230 Chapter 2. SciPy User Guide

https://docs.scipy.org/doc/scipy/reference/tutorial/stats/discrete.html#percent-point-function-inverse-cdf

SciPy Reference Guide, Release 1.8.0

>>> x = np.arange(4) * 2

>>> x

array ([0, 2, 4, 6])

>>> prb = hypergeom.cdf (x, M, n, N)

>>> prb

array ([1.03199174e-04, 5.21155831e-02, 6.08359133e-01,
9.89783282e-011)

>>> hypergeom.ppf (prb, M, n, N)

array ([0., 2., 4., 6.1)

If we use values that are not at the kinks of the cdf step function, we get the next higher integer back:

>>> hypergeom.ppf (prb + 1e-8, M, n, N)
array ([1., 3., 5., 7.1)
>>> hypergeom.ppf (prb - 1e-8, M, n, N)
array ([0., 2., 4., 6.1)

Fitting distributions

The main additional methods of the not frozen distribution are related to the estimation of distribution parameters:
* fit: maximum likelihood estimation of distribution parameters, including location
and scale
* fit loc_scale: estimation of location and scale when shape parameters are given
« nnlf: negative log likelihood function

 expect: calculate the expectation of a function against the pdf or pmf

Performance issues and cautionary remarks

The performance of the individual methods, in terms of speed, varies widely by distribution and method. The results of
a method are obtained in one of two ways: either by explicit calculation, or by a generic algorithm that is independent of
the specific distribution.

Explicit calculation, on the one hand, requires that the method is directly specified for the given distribution, either through
analytic formulas or through special functions in scipy.special or numpy.random for rvs. These are usually
relatively fast calculations.

The generic methods, on the other hand, are used if the distribution does not specify any explicit calculation. To define
a distribution, only one of pdf or cdf is necessary; all other methods can be derived using numeric integration and root
finding. However, these indirect methods can be very slow. As an example, rgh = stats.gausshyper.rvs (0.
5, 2, 2, 2, size=100) creates random variables in a very indirect way and takes about 19 seconds for 100 random
variables on my computer, while one million random variables from the standard normal or from the t distribution take
just above one second.

2.12. Statistics (scipy.stats) 231

SciPy Reference Guide, Release 1.8.0

Remaining issues
The distributions in scipy.stats have recently been corrected and improved and gained a considerable test suite;
however, a few issues remain:

¢ The distributions have been tested over some range of parameters; however, in some corner ranges, a few incorrect
results may remain.

¢ The maximum likelihood estimation in fit does not work with default starting parameters for all distributions and the
user needs to supply good starting parameters. Also, for some distribution using a maximum likelihood estimator
might inherently not be the best choice.

2.12.3 Building specific distributions

The next examples shows how to build your own distributions. Further examples show the usage of the distributions and
some statistical tests.

Making a continuous distribution, i.e., subclassing rv_continuous

Making continuous distributions is fairly simple.

>>> from scipy import stats
>>> class deterministic_gen(stats.rv_continuous):
def _cdf(self, x):
return np.where(x < 0, 0., 1.)
def _stats(self):
return 0., 0., 0., O.

>>> deterministic = deterministic_gen (name="deterministic")
>>> deterministic.cdf (np.arange (-3, 3, 0.5))
array ([0., 0., 0., O0., 0., 0., 1., 1., 1., 1., 1., 1.01)

Interestingly, the pdf is now computed automatically:

>>> deterministic.pdf (np.arange (-3, 3, 0.5))

array ([0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00,
5.83333333e+04, 4.16333634e-12,
4.16333634e-12, 4.16333634e-12,

.00000000e+00,
.00000000e+00,
.16333634e-12,
.16333634e-127)

> s O O

Be aware of the performance issues mentioned in Performance issues and cautionary remarks. The computation of
unspecified common methods can become very slow, since only general methods are called, which, by their very nature,
cannot use any specific information about the distribution. Thus, as a cautionary example:

>>> from scipy.integrate import quad
>>> quad(deterministic.pdf, -le-1, le-1)
(4.163336342344337e-13, 0.0)

But this is not correct: the integral over this pdf should be 1. Let’s make the integration interval smaller:

>>> quad (deterministic.pdf, -le-3, 1le-3) # warning removed
(1.000076872229173, 0.0010625571718182458)

232 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

This looks better. However, the problem originated from the fact that the pdf is not specified in the class definition of the
deterministic distribution.

Subclassing rv_discrete

In the following, we use stats.rv_discrete to generate a discrete distribution that has the probabilities of the
truncated normal for the intervals centered around the integers.

General info

From the docstring of rv_discrete, help (stats.rv_discrete),

“You can construct an arbitrary discrete rv where P{X=xk} = pk by passing to the rv_discrete initialization method
(through the values= keyword) a tuple of sequences (xk, pk) which describes only those values of X (xk) that occur
with nonzero probability (pk).”

Next to this, there are some further requirements for this approach to work:

* The keyword name is required.

 The support points of the distribution xk have to be integers.

* The number of significant digits (decimals) needs to be specified.
In fact, if the last two requirements are not satisfied, an exception may be raised or the resulting numbers may be incorrect.
An example

Let’s do the work. First:

>>> npoints = 20 # number of integer support points of the distribution.
—minus 1
>>> npointsh = npoints // 2

>>> npointsf = float (npoints)

>>> nbound = 4 # bounds for the truncated normal

>>> normbound = (1+1/npointsf) * nbound # actual bounds of truncated normal
>>> grid = np.arange (—npointsh, npointsh+2, 1) # integer grid

>>> gridlimitsnorm = (grid-0.5) / npointsh * nbound # bin limits for the.
—~truncnorm

>>> gridlimits = grid - 0.5 # used later in the analysis

>>> grid = grid[:-1]

>>> probs = np.diff(stats.truncnorm.cdf (gridlimitsnorm, -normbound, .

—normbound))

>>> gridint grid

And, finally, we can subclass rv_discrete:

>>> normdiscrete = stats.rv_discrete(values=(gridint,
np.round(probs, decimals=7)), name='normdiscrete')

Now that we have defined the distribution, we have access to all common methods of discrete distributions.

>>> print ('mean = , variance = , skew = , kurtosis = "%
R normdiscrete.stats (moments="mvsk'))

mean = -0.0000, wvariance = 6.3302, skew = 0.0000, kurtosis = -0.0076

>>> nd_std = np.sqgrt (normdiscrete.stats (moments='v"))

2.12. Statistics (scipy.stats) 233

SciPy Reference Guide, Release 1.8.0

Testing the implementation

Let’s generate a random sample and compare observed frequencies with the probabilities.

>>> n_sample = 500

>>> rvs = normdiscrete.rvs(size=n_sample)

>>> f, 1 = np.histogram(rvs, bins=gridlimits)

>>> sfreq = np.vstack([gridint, £, probs*n_sample]).T

>>> print (sfreq)

[[-1.00000000e+01 0.00000000e+00 2.95019349e-02] # random
[-9.00000000e+00 0.00000000e+00 1.32294142e-01]
[-8.00000000e+00 0.00000000e+00 5.06497902e-01]
[-7.00000000e+00 2.00000000e+00 1.65568919e+00]
[-6.00000000e+00 1.00000000e+00 4.62125309e+00]
[-5.00000000e+00 9.00000000e+00 1.10137298e+01]
[-4.00000000e+00 2.60000000e+01 2.24137683e+01]
[-3.00000000e+00 3.70000000e+01 3.89503370e+01]
[-2.00000000e+00 5.10000000e+01 5.78004747e+01]
[-1.00000000e+00 7.10000000e+01 7.32455414e+01]

[0.00000000e+00 7.40000000e+01 7.92618251e+01]
[1.00000000e+00 8.90000000e+01 7.32455414e+01]
[2.00000000e+00 5.50000000e+01 5.78004747e+01]
[3.00000000e+00 5.00000000e+01 3.89503370e+01]
[4.00000000e+00 1.70000000e+01 2.24137683e+01]
[5.00000000e+00 1.10000000e+01 1.10137298e+01]
[6.00000000e+00 4.00000000e+00 4.62125309e+00]
[7.00000000e+00 3.00000000e+00 1.65568919e+00]
[8.00000000e+00 0.00000000e+00 5.06497902e-01]
[9.00000000e+00 0.00000000e+00 1.32294142e-01]
[1.00000000e+01 0.00000000e+00 2.95019349e-021]]
Frequency and Probability of normdiscrete
HEl true
0.15 4 B sample
9
§ 0.10
S
o
i
0.05 A
0.00 -

-109-8-7-6-5-4-3-2-1012 34567 8910

Next, we can test whether our sample was generated by our norm-discrete distribution. This also verifies whether the
random numbers were generated correctly.

The chisquare test requires that there are a minimum number of observations in each bin. We combine the tail bins into

larger bins so that they contain enough observations.

234

Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Cumulative Frequency and CDF of normdiscrete

107w true

0g | . sample

o 0.6

cd

0.4

0.2 4

0.0 -
-109-8-7-6-5-4-3-2-1012 34567 8910

>>> f2 = np.hstack ([f[:5].sum(), f£[5:-5], f[-5:].sum()])
>>> p2 = np.hstack([probs[:5].sum(), probs[5:-5], probs[-5:].sum()])

>>> ch2, pval = stats.chisquare(f2, p2*n_sample)

>>> print ('chisquare for normdiscrete: chi2 = pvalue = "% (chz, .
—pval))

chisquare for normdiscrete: chi2 = 12.466 pvalue = 0.4090 # random

The pvalue in this case is high, so we can be quite confident that our random sample was actually generated by the
distribution.

2.12.4 Analysing one sample

First, we create some random variables. We set a seed so that in each run we get identical results to look at. As an example
we take a sample from the Student t distribution:

>>> x = stats.t.rvs (10, size=1000)

Here, we set the required shape parameter of the t distribution, which in statistics corresponds to the degrees of freedom,
to 10. Using size=1000 means that our sample consists of 1000 independently drawn (pseudo) random numbers. Since
we did not specify the keyword arguments /oc and scale, those are set to their default values zero and one.

Descriptive statistics

x is a numpy array, and we have direct access to all array methods, e.g.,

>>> print (x.min()) # equivalent to np.min (x)
-3.78975572422 # random

>>> print(x.max()) # equivalent to np.max (x)
5.26327732981 # random

>>> print (x.mean()) # equivalent to np.mean (x)

(continues on next page)

2.12. Statistics (scipy.stats) 235

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

0.0140610663985 # random
>>> print(x.var()) # equivalent to np.var(x))
1.28899386208 # random

How do the sample properties compare to their theoretical counterparts?

>>> m, v, s, k = stats.t.stats (10, moments='mvsk')

>>> n, (smin, smax), sm, sv, sSs, sk = stats.describe (x)

>>> sstr = ' mean = , variance = , skew = , kurtosis =
>>> print(sstr % ('distribution:', m, v, s ,k))

distribution: mean = 0.0000, wvariance = 1.2500, skew = 0.0000, kurtosis = 1.
—~0000 # random

>>> print (sstr % ('sample:', sm, sv, ss, sk))

sample: mean = 0.0141, variance = 1.2903, skew = 0.2165, kurtosis = 1.

0556 # random

Note: stats.describe uses the unbiased estimator for the variance, while np.var is the biased estimator.

For our sample the sample statistics differ a by a small amount from their theoretical counterparts.

T-test and KS-test

We can use the t-test to test whether the mean of our sample differs in a statistically significant way from the theoretical
expectation.

o)

>>> print ('t-statistic = pvalue = ' % stats.ttest_lsamp(x, m))
t-statistic = 0.391 pvalue = 0.6955 # random

The pvalue is 0.7, this means that with an alpha error of, for example, 10%, we cannot reject the hypothesis that the
sample mean is equal to zero, the expectation of the standard t-distribution.

As an exercise, we can calculate our ttest also directly without using the provided function, which should give us the same
answer, and so it does:

>>> tt = (sm—m)/np.sqrt(sv/float (n)) # t-statistic for mean
>>> pval = stats.t.sf(np.abs(tt), n-1)*2 # two-sided pvalue = Prob (abs(t)>tt)

>>> print ('t-statistic = pvalue = "% (tt, pval))
t-statistic = 0.391 pvalue = 0.6955 # random

The Kolmogorov-Smirnov test can be used to test the hypothesis that the sample comes from the standard t-distribution

>>> print ('KS-statistic D = pvalue = ' % stats.kstest (x, 't', (10,

=)))
KS-statistic D = 0.016 pvalue = 0.9571 # random

Again, the p-value is high enough that we cannot reject the hypothesis that the random sample really is distributed ac-
cording to the t-distribution. In real applications, we don’t know what the underlying distribution is. If we perform the
Kolmogorov-Smirnov test of our sample against the standard normal distribution, then we also cannot reject the hypoth-
esis that our sample was generated by the normal distribution given that, in this example, the p-value is almost 40%.

236 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

>>> print ('KS-statistic D = pvalue = ' % stats.kstest (x, 'norm'))
KS-statistic D = 0.028 pvalue = 0.3918 # random

However, the standard normal distribution has a variance of 1, while our sample has a variance of 1.29. If we standardize
our sample and test it against the normal distribution, then the p-value is again large enough that we cannot reject the
hypothesis that the sample came form the normal distribution.

>>> d, pval = stats.kstest((x-x.mean())/x.std(), 'norm')
>>> print ('KS-statistic D = pvalue = "% (d, pval))
KS—-statistic D = 0.032 pvalue = 0.2397 # random

Note: The Kolmogorov-Smirnov test assumes that we test against a distribution with given parameters, since, in the last
case, we estimated mean and variance, this assumption is violated and the distribution of the test statistic, on which the
p-value is based, is not correct.

Tails of the distribution

Finally, we can check the upper tail of the distribution. We can use the percent point function ppf, which is the inverse
of the cdf function, to obtain the critical values, or, more directly, we can use the inverse of the survival function

>>> crit01, crit05, critl0 = stats.t.ppf([1-0.01, 1-0.05, 1-0.10], 10)
>>> print ('critical values from ppf at 1%%, 5 and 10

% (crit01, crit05, critil10))

critical values from ppf at 1%, 5% and 10% 2.7638 1.8125 1.3722
>>> print('critical values from isf at 1%%, 5 and 10 !
—% tuple(stats.t.isf([0.01,0.05,0.10],10)))

critical values from isf at 1%, 5% and 10% 2.7638 1.8125 1.3722

>>> freq0l = np.sum(x>crit01l) / float(n) * 100
>>> freq05 = np.sum(x>crit05) / float(n) * 100
>>> freql0 = np.sum(x>critl10) / float(n) * 100
>>> print ('sample —frequency at 1%%, 5 and 10 tail !

% (freqg0l, freql05, freqglO))
sample %-frequency at 1%, 5% and 10% tail 1.4000 5.8000 10.5000 # random

In all three cases, our sample has more weight in the top tail than the underlying distribution. We can briefly check a larger
sample to see if we get a closer match. In this case, the empirical frequency is quite close to the theoretical probability,
but if we repeat this several times, the fluctuations are still pretty large.

>>> freq051 = np.sum(stats.t.rvs (10, size=10000) > crit05) / 10000.0 * 100
>>> print ('larger sample —frequency at 5 tail ' % freq051)
larger sample %$-frequency at 5% tail 4.8000 # random

We can also compare it with the tail of the normal distribution, which has less weight in the tails:

o\

>>> print('tail prob. of normal at 1%%, 5 and 10 !
. tuple (stats.norm.sf ([crit0l1, crit05, critl10])*100))
tail prob. of normal at 1%, 5% and 10% 0.2857 3.4957 8.5003

The chisquare test can be used to test whether for a finite number of bins, the observed frequencies differ significantly
from the probabilities of the hypothesized distribution.

2.12. Statistics (scipy.stats) 237

SciPy Reference Guide, Release 1.8.0

>>> quantiles = [0.0, 0.01, 0.05, 0.1, 1-0.10, 1-0.05, 1-0.01, 1.0]
>>> crit = stats.t.ppf(quantiles, 10)
>>> crit

array ([-inf, -2.76376946, -1.81246112, -1.37218364, 1.37218364,
1.81246112, 2.763769%40, inf])

>>> n_sample = x.size

>>> freqgcount = np.histogram(x, bins=crit) [0]

>>> tprob = np.diff (quantiles)
>>> nprob = np.diff (stats.norm.cdf (crit))

>>> tch, tpval = stats.chisquare (fregcount, tprob*n_sample)

>>> nch, npval = stats.chisquare (freqgcount, nprob*n_sample)

>>> print ('chisquare for t: chi2 = pvalue = ' % (tch, tpval))
chisquare for t: chi2 = 2.30 pvalue = 0.8901 # random

>>> print ('chisquare for normal: chi2 = pvalue = ' % (nch, npval))
chisquare for normal: chi2 = 64.60 pvalue = 0.0000 # random

We see that the standard normal distribution is clearly rejected, while the standard t-distribution cannot be rejected. Since
the variance of our sample differs from both standard distributions, we can again redo the test taking the estimate for scale
and location into account.

The fit method of the distributions can be used to estimate the parameters of the distribution, and the test is repeated
using probabilities of the estimated distribution.

>>> tdof, tloc, tscale = stats.t.fit (x)

>>> nloc, nscale = stats.norm.fit (x)

>>> tprob = np.diff(stats.t.cdf(crit, tdof, loc=tloc, scale=tscale))

>>> nprob = np.diff (stats.norm.cdf (crit, loc=nloc, scale=nscale))

>>> tch, tpval = stats.chisquare (freqgcount, tprob*n_sample)

>>> nch, npval = stats.chisquare (freqgcount, nprob*n_sample)

>>> print ('chisquare for t: chi2 = pvalue = ' % (tch, tpval))
chisquare for t: chi2 = 1.58 pvalue = 0.9542 # random

>>> print ('chisquare for normal: chi2 = pvalue = ' % (nch, npval))
chisquare for normal: chi2 = 11.08 pvalue = 0.0858 # random

Taking account of the estimated parameters, we can still reject the hypothesis that our sample came from a normal
distribution (at the 5% level), but again, with a p-value of 0.95, we cannot reject the t-distribution.

Special tests for normal distributions

Since the normal distribution is the most common distribution in statistics, there are several additional functions available
to test whether a sample could have been drawn from a normal distribution.

First, we can test if skew and kurtosis of our sample differ significantly from those of a normal distribution:

>>> print ('normal skewtest teststat = pvalue = ' % stats.
—skewtest (x))

normal skewtest teststat = 2.785 pvalue = 0.0054 # random

>>> print ('normal kurtosistest teststat = pvalue = ' % stats.
—kurtosistest (x))

normal kurtosistest teststat = 4.757 pvalue = 0.0000 # random

These two tests are combined in the normality test

238 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

[

>>> print ('normaltest teststat = pvalue = ' % stats.normaltest (X))
normaltest teststat = 30.379 pvalue = 0.0000 # random

In all three tests, the p-values are very low and we can reject the hypothesis that the our sample has skew and kurtosis of
the normal distribution.

Since skew and kurtosis of our sample are based on central moments, we get exactly the same results if we test the
standardized sample:

o\

>>> print ('normaltest teststat = pvalue = !
Ce . stats.normaltest ((x—-x.mean ()) /x.std()))
normaltest teststat = 30.379 pvalue = 0.0000 # random

Because normality is rejected so strongly, we can check whether the normaltest gives reasonable results for other cases:

>>> print ('normaltest teststat = pvalue = "%

C stats.normaltest (stats.t.rvs (10, size=100)))
normaltest teststat = 4.698 pvalue = 0.0955 # random

>>> print ('normaltest teststat = pvalue = ' %

c. stats.normaltest (stats.norm.rvs (size=1000)))
normaltest teststat = 0.613 pvalue = 0.7361 # random

When testing for normality of a small sample of t-distributed observations and a large sample of normal-distributed
observations, then in neither case can we reject the null hypothesis that the sample comes from a normal distribution. In
the first case, this is because the test is not powerful enough to distinguish a t and a normally distributed random variable
in a small sample.

2.12.5 Comparing two samples

In the following, we are given two samples, which can come either from the same or from different distribution, and we
want to test whether these samples have the same statistical properties.

Comparing means

Test with sample with identical means:

>>> rvsl = stats.norm.rvs(loc=5, scale=10, size=500)

>>> rvs2 = stats.norm.rvs(loc=5, scale=10, size=500)

>>> stats.ttest_ind(rvsl, rvs2)

Ttest_indResult (statistic=-0.5489036175088705, pvalue=0.5831943748663959) #._
—random

Test with sample with different means:

>>> rvs3 = stats.norm.rvs (loc=8, scale=10, size=500)

>>> stats.ttest_ind(rvsl, rvs3)

Ttest_indResult (statistic=-4.533414290175026, pvalue=6.507128186389019e-06)
—# random

2.12. Statistics (scipy.stats) 239

SciPy Reference Guide, Release 1.8.0

Kolmogorov-Smirnov test for two samples ks_2samp

For the example, where both samples are drawn from the same distribution, we cannot reject the null hypothesis, since
the pvalue is high

>>> stats.ks_2samp (rvsl, rvs2)
KstestResult (statistic=0.026, pvalue=0.9959527565364388) # random

In the second example, with different location, i.e., means, we can reject the null hypothesis, since the pvalue is below 1%

>>> stats.ks_2samp (rvsl, rvs3)
KstestResult (statistic=0.114, pvalue=0.00299005061044668) # random

2.12.6 Kernel density estimation

A common task in statistics is to estimate the probability density function (PDF) of a random variable from a set of data
samples. This task is called density estimation. The most well-known tool to do this is the histogram. A histogram is a
useful tool for visualization (mainly because everyone understands it), but doesn’t use the available data very efficiently.
Kernel density estimation (KDE) is a more efficient tool for the same task. The gaussian_kde estimator can be used
to estimate the PDF of univariate as well as multivariate data. It works best if the data is unimodal.

Univariate estimation

We start with a minimal amount of data in order to see how gaussian_kde works and what the different options for
bandwidth selection do. The data sampled from the PDF are shown as blue dashes at the bottom of the figure (this is
called a rug plot):

>>> from scipy import stats
>>> import matplotlib.pyplot as plt

>>> x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float64)
>>> kdel = stats.gaussian_kde (x1)
>>> kde2 = stats.gaussian_kde (x1, bw_method='silverman')

>>> fig = plt.figure()
>>> ax = fig.add_subplot (111)

>>> ax.plot (x1, np.zeros(xl.shape), 'b+', ms=20) # rug plot

>>> x_eval = np.linspace(-10, 10, num=200)

>>> ax.plot (x_eval, kdel(x_eval), 'k-', label="Scott's Rule")

>>> ax.plot (x_eval, kde2(x_eval), 'r-', label="Silverman's Rule")

>>> plt.show ()

We see that there is very little difference between Scott’s Rule and Silverman’s Rule, and that the bandwidth selection with
a limited amount of data is probably a bit too wide. We can define our own bandwidth function to get a less smoothed-out
result.

>>> def my_kde_bandwidth (obj, fac=1./5):
""rpe use Scott's Rule, multiplied by a constant factor."""
return np.power (obj.n, —-1./(obj.d+4)) * fac

240 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

0.06 A
0.05 ~
0.04 ~
0.03 ~
0.02 ~

0.01 ~

0.00 A

>>> fig = plt.figure()

>>> ax = fig.add_subplot (111)

>>> ax.plot (x1l, np.zeros(xl.shape), 'b+t', ms=20) # rug plot
>>> kde3 = stats.gaussian_kde (x1, bw_method=my_kde_bandwidth)
>>> ax.plot (x_eval, kde3(x_eval), 'g-', label="With smaller BW")
>>> plt.show ()

0.15 ~

0.10 ~

0.05 A

0.00 A

We see that if we set bandwidth to be very narrow, the obtained estimate for the probability density function (PDF) is
simply the sum of Gaussians around each data point.

We now take a more realistic example and look at the difference between the two available bandwidth selection rules.
Those rules are known to work well for (close to) normal distributions, but even for unimodal distributions that are quite

2.12. Statistics (scipy.stats)

241

SciPy Reference Guide, Release 1.8.0

strongly non-normal they work reasonably well. As a non-normal distribution we take a Student’s T distribution with 5
degrees of freedom.

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

rng = np.random.default_rng/()

x1 = rng.normal (size=200) # random data, normal distribution
xs = np.linspace(xl.min()-1, x1.max()+1, 200)

kdel = stats.gaussian_kde (x1)

kde2 = stats.gaussian_kde(xl, bw_method='silverman')

fig = plt.figure(figsize=(8, 6))

axl fig.add_subplot (211)

axl.plot (x1l, np.zeros(xl.shape), 'bt+', ms=12) # rug plot
axl.plot (xs, kdel(xs), 'k-', label="Scott's Rule")
axl.plot (xs, kde2(xs), 'b-', label="Silverman's Rule'")
axl.plot (xs, stats.norm.pdf(xs), 'r—--', label="True PDE")

axl.set_xlabel ('x")

axl.set_ylabel ('Density'")

axl.set_title("Normal (top) and Student's T$_{df=5}$ (bottom) distributions")
axl.legend(loc=1)

x2 = stats.t.rvs (5, size=200, random_state=rng) # random data, T distribution
xs = np.linspace(x2.min() - 1, x2.max() + 1, 200)

kde3 = stats.gaussian_kde (x2)
kded stats.gaussian_kde (x2, bw_method='silverman')

ax2 = fig.add_subplot (212)

ax2.plot (x2, np.zeros(x2.shape), 'b+', ms=12) # rug plot
ax2.plot (xs, kde3(xs), 'k-', label="Scott's Rule")
ax2.plot (xs, kded(xs), 'b-', label="Silverman's Rule'")
ax2.plot (xs, stats.t.pdf(xs, 5), 'r——-', label="True PDEF")

ax2.set_xlabel ('x")
ax2.set_ylabel ('Density')

plt.show()

We now take a look at a bimodal distribution with one wider and one narrower Gaussian feature. We expect that this will
be a more difficult density to approximate, due to the different bandwidths required to accurately resolve each feature.

>>> from functools import partial

>>> locl, scalel, sizel = (-2, 1, 175)
>>> loc2, scale2, size2 = (2, 0.2, 50)
>>> x2 = np.concatenate ([np.random.normal (loc=locl, scale=scalel, size=sizel),

(continues on next page)

242 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Normal (top) and Student's Ty4r=5 (bottom) distributions

— Scott's Rule
— Silverman's Rule
=== True PDF

0.3 4

0.2

Density

0.1 A

0.0 +

2.12. Statistics (scipy.stats) 243

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

np.random.normal (loc=1loc2, scale=scale2,.
—size=size2)])

>>> x_eval = np.linspace(x2.min() - 1, x2.max() + 1, 500)

>>> kde = stats.gaussian_kde (x2)

>>> kde2 = stats.gaussian_kde (x2, bw_method='silverman')

>>> kde3 = stats.gaussian_kde (x2, bw_method=partial (my_kde_bandwidth, fac=0.
—2))

>>> kded = stats.gaussian_kde (x2, bw_method=partial (my_kde_bandwidth, fac=0.
—~5))

>>> pdf = stats.norm.pdf
>>> bimodal_pdf = pdf (x_eval, loc=locl, scale=scalel) * float(sizel) / x2.
—size + \

pdf (x_eval, loc=loc2, scale=scale2) * float(size2) / x2.size

>>> fig = plt.figure(figsize=(8, 6))
>>> ax fig.add_subplot (111)

>>> ax.plot (x2, np.zeros(x2.shape), 'b+t', ms=12)

>>> ax.plot (x_eval, kde(x_eval), 'k-'", label="Scott's Rule")

>>> ax.plot (x_eval, kde2(x_eval), 'b-', label="Silverman's Rule")
>>> ax.plot (x_eval, kde3(x_eval), 'g-', label="Scott * 0.2")

>>> ax.plot (x_eval, kded (x_eval), 'c—', label="Scott * 0.5")

>>> ax.plot (x_eval, bimodal_pdf, 'r--', label="Actual PDE")

>>> ax.set_xlim([x_eval.min(), x_eval.max()])
>>> ax.legend(loc=2)

>>> ax.set_xlabel ('x")

>>> ax.set_ylabel ('Density'")

>>> plt.show ()

As expected, the KDE is not as close to the true PDF as we would like due to the different characteristic size of the two
features of the bimodal distribution. By halving the default bandwidth (Scott * 0.5), we can do somewhat better,
while using a factor 5 smaller bandwidth than the default doesn’t smooth enough. What we really need, though, in this
case, is a non-uniform (adaptive) bandwidth.

Multivariate estimation

With gaussian_kde we can perform multivariate, as well as univariate estimation. We demonstrate the bivariate case.
First, we generate some random data with a model in which the two variates are correlated.

>>> def measure (n):
"""Measurement model, return two coupled measurements."""
ml = np.random.normal (size=n)
m2 = np.random.normal (scale=0.5, size=n)
return ml+m2, ml-m2

244 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Silverman's Rule
Scott * 0.2
Scott * 0.5

Scott's Rule ﬁ

0.4

—=—=- Actual PDF

Density

2.12. Statistics (scipy.stats) 245

SciPy Reference Guide, Release 1.8.0

>>> ml, m2 = measure (2000)
>>> xmin = ml.min ()
>>> xmax = ml.max ()
>>> ymin = m2.min ()
>>> ymax = m2.max ()

Then we apply the KDE to the data:

>>> X, Y = np.mgrid[xmin:xmax:1003j, ymin:ymax:1007]

>>> positions = np.vstack([X.ravel(), Y.ravel()])

>>> values = np.vstack([ml, m2])

>>> kernel = stats.gaussian_kde (values)

>>> 7 = np.reshape (kernel.evaluate (positions) .T, X.shape)

Finally, we plot the estimated bivariate distribution as a colormap and plot the individual data points on top.

>>> fig = plt.figure(figsize=(8, 6))
>>> ax = fig.add_subplot (111)

>>> ax.imshow (np.rot90(Z), cmap=plt.cm.gist_earth_r,
extent=[xmin, xmax, ymin, ymax])
>>> ax.plot(ml, m2, 'k.', markersize=2)

>>> ax.set_xlim([xmin, xmax])
>>> ax.set_ylim([ymin, ymax])

>>> plt.show ()

Multiscale Graph Correlation (MGC)

With multiscale_graphcorr, we can test for independence on high dimensional and nonlinear data. Before we
start, let’s import some useful packages:

>>> import numpy as np
>>> import matplotlib.pyplot as plt; plt.style.use('classic')
>>> from scipy.stats import multiscale_graphcorr

Let’s use a custom plotting function to plot the data relationship:

>>> def mgc_plot(x, y, sim_name, mgc_dict=None, only_viz=False,
only_mgc=False) :

""rplot sim and MGC-plot"'""

if not only_mgc:
simulation
plt.figure(figsize=(8, 8))
ax = plt.gcal()
ax.set_title(sim_name + " Simulation", fontsize=20)
ax.scatter(x, vy)
ax.set_xlabel ('X', fontsize=15)
ax.set_ylabel ('Y', fontsize=15)
ax.axis('equal')

(continues on next page)

246 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

3' rl
1]
ox.
2 TR
o
o4
R
1A foo -
O_
—1 4
s 1 :. 4 ""::‘..‘:
_2- R 0.
“ 0':. o-.'
—34
_4 T T T T T T T
-4 -3 -2 -1 0 1

N

2.12. Statistics (scipy.stats)

247

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

ax.tick_params (axis="x", labelsize=15)
ax.tick_params (axis="y", labelsize=15)
plt.show()
if not only_viz:
local correlation map
plt.figure(figsize=(8,8))
ax = plt.gcal()
mgc_map = mgc_dict["mgc_map"]
draw heatmap
ax.set_title("Local Correlation Map", fontsize=20)
im = ax.imshow (mgc_map, cmap='YlGnBu')
colorbar
cbar = ax.figure.colorbar (im, ax=ax)
cbar.ax.set_ylabel ("", rotation=-90, va="bottom")
ax.invert_yaxis ()
Turn spines off and create white grid.
for edge, spine in ax.spines.items() :
spine.set_visible (False)
optimal scale
opt_scale = mgc_dict["opt_scale"]
ax.scatter (opt_scale[0], opt_scale[l],
marker='X"', s=200, color='red'")
other formatting
ax.tick_params (bottom="off", left="off")
ax.set_xlabel ('#Neighbors for X', fontsize=15)
ax.set_ylabel ('#Neighbors for Y', fontsize=15)
ax.tick_params (axis="x", labelsize=15)
ax.tick_params (axis="y", labelsize=15)
ax.set_x1im (0, 100)
ax.set_ylim (0, 100)
plt.show ()

Let’s look at some linear data first:

>>> rng = np.random.default_rng()
>>> x = np.linspace(-1, 1, num=100)
>>> y = x + 0.3 * rng.random(x.size)

The simulation relationship can be plotted below:

>>> mgc_plot (x, y, "Linear", only_viz=True)

Now, we can see the test statistic, p-value, and MGC map visualized below. The optimal scale is shown on the map as a
red “x”:

>>> stat, pvalue, mgc_dict = multiscale_graphcorr(x, V)

>>> print ("MGC test statistic: ", round(stat, 1))
MGC test statistic: 1.0
>>> print ("P-value: ", round(pvalue, 1))

P-value: 0.0
>>> mgc_plot (x, y, "Linear", mgc_dict, only_mgc=True)

It is clear from here, that MGC is able to determine a relationship between the input data matrices because the p-value is

248 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Linear Simulation

o-
1.0 °
Os'.’
... ..
cod 0%
0 %°
0.5' o ©
o '.?
o 9
> o %
0.0- ¢ oot
. o® o
° ¢
o® %®°
o0 °
o o :
—0.5- o ®
e oo
o ® f‘
...'0
°
—1.0- : : : . .
-1.0 -0.5 0.0 0.5 1.0
X

. Statistics (scipy.stats) 249

SciPy Reference Guide, Release 1.8.0

Local Correlation Map

100 -
80 -
>_
2 60-
»
(@)
O
c
(@)]
‘S 40- 0.4
=
+:
20 -
0.2
O A 1 1 1 1 1
0 20 40 60 80 100
0.0

#Neighbors for X

250 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

very low and the MGC test statistic is relatively high. The MGC-map indicates a strongly linear relationship. Intuitively,
this is because having more neighbors will help in identifying a linear relationship between x and y. The optimal scale in
this case is equivalent to the global scale, marked by a red spot on the map.

The same can be done for nonlinear data sets. The following = and y arrays are derived from a nonlinear simulation:

>>> unif = np.array(rng.uniform (0, 5, size=100))
>>> x = unif * np.cos(np.pi * unif)
>>> y = unif * np.sin(np.pi * unif) + 0.4 * rng.random(x.size)

The simulation relationship can be plotted below:

>>> mgc_plot(x, y, "Spiral", only_viz=True)

Spiral Simulation

> [
o
°, ¢ %
41 oo
3 °
1)
@ ..0'.. LI '.
21 e e
@
° °
1_ [
> .:.‘ z
° ’ ‘
O_
°
LY R
—1 e a8
—2 ¢ ®e
°
°
-3 ° o o
°
—4 —2 0 2 4
X

Now, we can see the test statistic, p-value, and MGC map visualized below. The optimal scale is shown on the map as a

2.12. Statistics (scipy.stats) 251

SciPy Reference Guide, Release 1.8.0

red “x”:

>>> stat, pvalue, mgc_dict = multiscale_graphcorr(x, V)
>>> print ("MGC test statistic: ", round(stat, 1))

MGC test statistic: 0.2 # random

>>> print ("P-value: ", round(pvalue, 1))

P-value: 0.0

>>> mgc_plot(x, y, "Spiral", mgc_dict, only_mgc=True)

Local Correlation Map

100-

80 -
>_
2 60-
0
(@)
o)
e
(@)]
‘S 40-
=2
3+
20-
O-I 1 1 1 1
0 20 40 60 80

#Neighbors for X

0.16

0.14

0.12

0.10

0.08

0.06

- 0.04

- 0.02

100

0.00

It is clear from here, that MGC is able to determine a relationship again because the p-value is very low and the MGC test
statistic is relatively high. The MGC-map indicates a strongly nonlinear relationship. The optimal scale in this case is

equivalent to the local scale, marked by a red spot on the map.

252

Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

2.12.7 Quasi-Monte Carlo

Before talking about Quasi-Monte Carlo (QMC), a quick introduction about Monte Carlo (MC). MC methods, or MC
experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical
results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They
are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other
approaches. MC methods are mainly used in three problem classes: optimization, numerical integration, and generating
draws from a probability distribution.

Generating random numbers with specific properties is a more complex problem than it sounds. Simple MC methods
are designed to sample points to be independent and identically distributed (IID). But generating multiple sets of random
points can produce radically different results.

1.0 4 () (] 1.0 4 o o C)
TR - LY R T v o, e s
| ' Y) S, ‘. ° ° i ° : ’
081 8% ® s ° 081 % e® o & T ope%
° .o' S e .so: X 1 e ®o .o.' ".' o a® oo
0.6 - .3 ©, °° : o ®® ‘. ° 061 o : ° % .0.00 o8
o e® o °° o‘:' & N ® oo o o
X f“‘ .o o ® X (X) r. L Y . O ‘2
0.4 % @, 0" ° 0.4 e 00 3.32" 000 e
® ’ [] ‘ P ... o o® ' (]
“. ® %07 0% o 3.0 ..0.. s o ©
s .: . o0 e° .o.. . oo.’ o® .o.....'.
] 8 eg S . e °° ') o. o o %o
[iyt ° % <o o 00 ®
V'. et e o % oo °® ®‘e® e ° °
0] % oo © 8°35°e 0.0 % ° °° g °
00 02 04 06 08 10 00 02 04 06 0.8 1.0

In both cases in the plot above, points are generated randomly without any knowledge about previously drawn points. It
is clear that some regions of the space are left unexplored - which can cause problems in simulations as a particular set of
points might trigger a totally different behaviour.

A great benefit of MC is that it has known convergence properties. Let’s look at the mean of the squared sum in 5
dimensions:
2

5
f(x) = ij ,

with z; ~ U(0,1). It has a known mean value, 1 = 5/3 + 5(5 — 1) /4. Using MC sampling, we can compute that mean
numerically, and the approximation error follows a theoretical rate of O(n~1/2).

Although the convergence is ensured, practitioners tend to want to have an exploration process which is more deterministic.
With normal MC, a seed can be used to have a repeatable process. But fixing the seed would break the convergence
property: a given seed could work for a given class of problem and break for another one.

What is commonly done to walk through the space in a deterministic manner, is to use a regular grid spanning all pa-
rameter dimensions, also called a saturated design. Let’s consider the unit-hypercube, with all bounds ranging from 0O to
1. Now, having a distance of 0.1 between points, the number of points required to fill the unit interval would be 10. In
a 2-dimensional hypercube the same spacing would require 100, and in 3 dimensions 1,000 points. As the number of
dimensions grows, the number of experiments which is required to fill the space rises exponentially as the dimensionality
of the space increases. This exponential growth is called “the curse of dimensionality”.

2.12. Statistics (scipy.stats) 253

SciPy Reference Guide, Release 1.8.0

log(e)

1071t

| o
L L I R L T L LB LR | T T T
24 25 26 27 28 29 210 211 212
Ns
>>> import numpy as np
>>> disc = 10
>>> x1 = np.linspace(0, 1, disc)
>>> x2 = np.linspace (0, 1, disc)
>>> x3 = np.linspace (0, 1, disc)
>>> x1, x2, x3 = np.meshgrid(xl, x2, x3)
10]/6 © ©¢ ©¢ © © © © o ©
® 6 o o6 o o o o o o
0819 ©¢ ©¢ ©¢ © © ©¢ © o o
e e 06 060 0 0 0 0 o
“le e 06 060606060 0 0
® 6 & o o o o o o o <
; ; . . ; ; e e 06 060 0 0 0 0 o
00 02 04 06 08 1.0 0.4
X1 ® © o o6 o o o o o o
0_2,. ® 6 6 o o o o o o
e e 06 060 0 0 0 0 o
00{6 © © ©¢ © © © © 0 o
00 02 04 06 08 10

X1

To mitigate this issue, QMC methods have been designed. They are deterministic, have a good coverage of the space and
some of them can be continued and retain good properties. The main difference with MC methods is that the points are
not IID but they know about previous points. Hence, some methods are also referred to as sequences.

This figure presents 2 sets of 256 points. The design of the left is a plain MC whereas the design of the right is a QMC
design using the Sobol’ method. We clearly see that the QMC version is more uniform. The points sample better near the
boundaries and there are less clusters or gaps.

One way to assess the uniformity is to use a measure called the discrepancy. Here the discrepancy of Sobol’ points is
better than crude MC.

Coming back to the computation of the mean, QMC methods also have better rates of convergence for the error. They
can achieve O(n 1) for this function, and even better rates on very smooth functions. This figure shows that the Sobol’
method has a rate of O(n~1):

254 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Sobol'—C? = 1.1e-05

=0.0035

MC—C?

... o °® ..‘... ... o o [
oo‘ o0 %% o® L4 oo
° ooooo ® o oooo L
& . ° 98 N ® 9
‘e ' % o o 0%’ %
% o8& % a % % °
LA Y 2 R S
o e oo e oo %o 000 -
' .. .~ ... ® o0 o
ot St et s
og %% % _ % %° o
@ .. ® .f.) ®e 00
% ©°° % _ % _e%° o
® ¢ e ® 0 @ ® ® o |
s I
e Y e
No ol L ¥
Qe oo 0000.‘ o
L ¥ oo
o8 ‘oo Qﬂ e o,
) s °® ®'e0 3
L ® ® P X
*o% %° o3 'Y
™ ° ° ° ¢ ® ® ° “ -
". [J ° ° [.‘ ®
og * ®° % ofo o
P .. ® ““‘Q .- L
° oo & o oo °
° e * o s |

0.6 0.8 1.0

0.4

0.2

0.0

1.0

0.2 0.4 0.6 0.8

0.0

X1

X1

e MC

® Sobol' unscrambled

211

109 E

101 E

(3)60]

1072]

I212

25 26 27 28 29 210

24

255

2.12. Statistics (scipy.stats)

SciPy Reference Guide, Release 1.8.0

We refer to the documentation of scipy.stats.gmc for more mathematical details.

Calculate the discrepancy

Let’s consider two sets of points. From the figure below, it is clear that the design on the left covers more of the space
than the design on the right. This can be quantified using a di screpancy measure. The lower the discrepancy, the
more uniform a sample is.

>>> import numpy as np

>>> from scipy.stats import gmc

>>> space_1 = np.array([[1, 31, [2, 6], [3, 21, [4, 51, [5, 11, [6, 411)
>>> space_2 = np.array([[1, 51, [2, 41, [3, 31, 1[4, 21, [5, 11, [6, 611)
>>> 1 _bounds = [0.5, 0.5]

>>> u_bounds = [6.5, 6.5]
>>> space_1 = gmc.scale(space_1, 1_bounds, u_bounds, reverse=True)
>>> space_2 = gmc.scale(space_2, 1_bounds, u_bounds, reverse=True)

>>> gmc.discrepancy (space_1)
0.008142039609053464
>>> gmc.discrepancy (space_2)
0.010456854423869011

space_1—C?=0.008142 space 2—C?=0.010457
[[J
0.8 A 0.8 A
[[J
06 T . 06 T .
< <
041 ® 0.4 - ®
[J [J
0.2 A 0.2 1
[J [J
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
X1 X1

Using a QMC engine

Several QMC samplers/engines are implemented. Here we look at two of the most used QMC methods: Sobol and
Halton sequences.

"""Sobol' and Halton sequences."""
from scipy.stats import gmc
import numpy as np

import matplotlib.pyplot as plt

(continues on next page)

256 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

rng = np.random.default_rng()

n_sample = 256
dim = 2

sample = {}

Sobol'

engine = gmc.Sobol (d=dim, seed=rng)
sample["Sobol'"] = engine.random(n_sample)
Halton

engine = gmc.Halton (d=dim, seed=rngqg)
sample["Halton"] = engine.random(n_sample)

fig, axs = plt.subplots(l, 2, figsize=(8,

for i, kind in enumerate (sample) :

4))

axs[i].scatter (samplelkind][:, 0], samplel[kind][:, 11)

axs[i] .set_aspect ('equal')

axs[i].set_xlabel (r'x_1")

axs[i].set_ylabel (r'Sx_2")

axs[i].set_title(f'{kind/—5$C"2 = S${gmc.discrepancy (sample[kind]) :.2}")

plt.tight_layout ()

plt.show()
Sobol'—C? =1.1e-05 Halton—C? = 2.7e-05
o .0..'.'..:.8‘. .0.0...0. ¢ o .\. :..o..’o'..o: '....o.
o, %0 0, 0,8 o > © ®o 060 ® o ®q o
0.8 ...'o.. '...'Oo ..o..'.‘ .:.. 0.8 ’0:0:.' ° '...0 ::;.‘ e e
° °
..o ..o. ... ° o..o.o . PY o .0. $$ % o o ...
06! ® . . .:0 .'o'.::'. o o...O 061 o '::..'.: .J’.. :.'.' %
o ® o0 o0 0% % 0% o ° o0 e ®a® o
X ® % _* %, o X W% %% % % e
044 o® $\. .‘ ..o....O'..... 0.4 '.. ® ::'..o :0‘ {o
.$ Q *e’ ~o.o. 0y 0% ° .:.%.... :....o .:...
0.2 - 0.'0.' .'.'o :' ;..' e 02—: °% *% 0..0 .o.o 0e°s
] 000 %0 20 0® 200 % o ' .'o..¢~' % 00 0%
© 0, 0.0 % oot g oo o 07 0% e,
00] "0 %0 ® "o %% " 0,0 00]0e®e®% e"e% ®e o

2.12. Statistics (scipy.stats)

257

SciPy Reference Guide, Release 1.8.0

Warning: QMC methods require particular care and the user must read the documentation to avoid common pitfalls.
Sobol’ for instance requires a number of points following a power of 2. Also, thinning, burning or other point selection
can break the properties of the sequence and result in a set of points which would not be better than MC.

QMC engines are state-aware. Meaning that you can continue the sequence, skip some points, or reset it. Let’s take 5

points from Halton. And then ask for a second set of 5 points:

>>> from scipy.stats import gmc
>>> engine = gmc.Halton (d=2)
>>> engine.random(5)

array ([[0.22166437, 0.07980522], # random
[0.72166437, 0.931657081,
[0.47166437, 0.41313856],
[0.97166437, 0.190916337,
[0.01853937, 0.7464718911)

>>> engine.random(5)

array ([[0.51853937, 0.52424967], # random
[0.26853937, 0.30202745]7,
[0.76853937, 0.857583 1,
[0.14353937, 0.63536078],
[0.64353937, 0.0180768311)

Now we reset the sequence. Asking for 5 points leads to the same first 5 points:

>>> engine.reset ()
>>> engine.random(5)

array ([[0.22166437, 0.07980522], # random
[0.72166437, 0.93165708],
[0.47166437, 0.41313856],
[0.97166437, 0.19091633],
[0.01853937, 0.7464718911)

And here we advance the sequence to get the same second set of 5 points:

>>> engine.reset ()
>>> engine.fast_forward(5)
>>> engine.random(5)

array ([[0.51853937, 0.52424967], # random
[0.26853937, 0.30202745]7,
[0.76853937, 0.857583 1,
[0.14353937, 0.635360787,
[0.64353937, 0.0180768311)

Note: By default, both Sobol and Halton are scrambled. The convergence properties are better, and it prevents the
appearance of fringes or noticeable patterns of points in high dimensions. There should be no practical reason not to use

the scrambled version.

258

Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Making a QMC engine, i.e., subclassing QMCEngine

To make your own OMCEngine, a few methods have to be defined. Following is an example wrapping numpy .
random.Generator

>>> import numpy as np
>>> from scipy.stats import gmc
>>> class RandomEngine (gmc.QMCEngine) :

def _ init_ (self, d, seed=None):
super () ._ _init__ (d=d, seed=seed)
self.rng = np.random.default_rng(self.rng_seed)

def random(self, n=1):
self.num_generated += n
return self.rng.random((n, self.d))

def reset (self):
self.rng = np.random.default_rng(self.rng_seed)
self.num_generated = 0
return self

def fast_forward(self, n):
self.random (n)
return self

Then we use it as any other QMC engine:

>>> engine = RandomEngine (2)
>>> engine.random(5)

array ([[0.22733602, 0.31675834], # random
[0.79736546, 0.676254677,
[0.39110955, 0.332813937,
[0.59830875, 0.186734197,
[0.67275604, 0.9418028711)

>>> engine.reset ()

>>> engine.random(5)

array ([[0.22733602, 0.31675834], # random
[0.79736546, 0.6762546717,
[0.39110955, 0.332813937,
[0.59830875, 0.186734197,
[0.67275604, 0.9418028711)

2.12. Statistics (scipy.stats) 259

https://numpy.org/devdocs/reference/random/generator.html#numpy.random.Generator
https://numpy.org/devdocs/reference/random/generator.html#numpy.random.Generator

SciPy Reference Guide, Release 1.8.0

Guidelines on using QMC

e QMC has rules! Be sure to read the documentation or you might have no benefit over MC.
» Use Sobol if you need exactly 2™ points.

e Halton allows to sample, or skip, an arbitrary number of points. This is at the cost of a slower rate of convergence
than Sobol’.

* Never remove the first points of the sequence. It will destroy the properties.
» Scrambling is always better.

* If you use LHS based methods, you cannot add points without losing the LHS properties. (There are some methods
to do so, but this is not implemented.)

2.13 Multidimensional image processing (scipy.ndimage)

2.13.1 Introduction

Image processing and analysis are generally seen as operations on 2-D arrays of values. There are, however, a number
of fields where images of higher dimensionality must be analyzed. Good examples of these are medical imaging and
biological imaging. numpy is suited very well for this type of applications due to its inherent multidimensional nature.
The scipy.ndimage packages provides a number of general image processing and analysis functions that are designed
to operate with arrays of arbitrary dimensionality. The packages currently includes: functions for linear and non-linear
filtering, binary morphology, B-spline interpolation, and object measurements.

2.13.2 Properties shared by all functions

All functions share some common properties. Notably, all functions allow the specification of an output array with the
output argument. With this argument, you can specify an array that will be changed in-place with the result with the
operation. In this case, the result is not returned. Usually, using the oufput argument is more efficient, since an existing
array is used to store the result.

The type of arrays returned is dependent on the type of operation, but it is, in most cases, equal to the type of the input.
If, however, the output argument is used, the type of the result is equal to the type of the specified output argument. If
no output argument is given, it is still possible to specify what the result of the output should be. This is done by simply
assigning the desired numpy type object to the output argument. For example:

>>> from scipy.ndimage import correlate

>>> correlate(np.arange(10), [1, 2.51)

array([O, 2, 6, 9, 13, 16, 20, 23, 27, 301)

>>> correlate(np.arange(10), [1, 2.5], output=np.float64)

array([0. , 2.5, 6. , 9.5, 13. , 16.5, 20. , 23.5, 27. , 30.5])

260 Chapter 2. SciPy User Guide

https://numpy.org/devdocs/reference/index.html#module-numpy
https://numpy.org/devdocs/reference/index.html#module-numpy

SciPy Reference Guide, Release 1.8.0

2.13.3 Filter functions

The functions described in this section all perform some type of spatial filtering of the input array: the elements in
the output are some function of the values in the neighborhood of the corresponding input element. We refer to this
neighborhood of elements as the filter kernel, which is often rectangular in shape but may also have an arbitrary footprint.
Many of the functions described below allow you to define the footprint of the kernel by passing a mask through the
footprint parameter. For example, a cross-shaped kernel can be defined as follows:

>>> footprint = np.array([([(o, 1, 01, [, 1, 11, [0, 1, 011)
>>> footprint
array ([[O0, 1, 01,

(4, 1, 11,

(0, 1, 011)

Usually, the origin of the kernel is at the center calculated by dividing the dimensions of the kernel shape by two. For
instance, the origin of a 1-D kernel of length three is at the second element. Take, for example, the correlation of a 1-D
array with a filter of length 3 consisting of ones:

>>> from scipy.ndimage import correlateld
>>> a = [0, O, O, 1, O, O, O]
>>> correlateld(a, [1, 1, 11)
array ([0, O, 1, 1, 1, 0, 01])

Sometimes, it is convenient to choose a different origin for the kernel. For this reason, most functions support the origin
parameter, which gives the origin of the filter relative to its center. For example:

>> a = [0, 0, O, 1, 0, 0, 0]
>>> correlateld(a, [1, 1, 1], origin = -1)
array ([0, 1, 1, 1, 0, 0, 01])

The effect is a shift of the result towards the left. This feature will not be needed very often, but it may be useful, especially
for filters that have an even size. A good example is the calculation of backward and forward differences:

>>> a = [0, O, 1, 1, 1, 0, 0]

>>> correlateld(a, [-1, 11) # backward difference
array([O, 0, 1, 0, 0, -1, 0])

>>> correlateld(a, [-1, 1], origin = -1) # forward difference

array ([O, 1, 0, o, -1, 0, 01)

We could also have calculated the forward difference as follows:

>>> correlateld(a, [0, -1, 11])
array([0, 1, 0, 0, -1, 0, 0])

However, using the origin parameter instead of a larger kernel is more efficient. For multidimensional kernels, origin can
be a number, in which case the origin is assumed to be equal along all axes, or a sequence giving the origin along each
axis.

Since the output elements are a function of elements in the neighborhood of the input elements, the borders of the array
need to be dealt with appropriately by providing the values outside the borders. This is done by assuming that the arrays
are extended beyond their boundaries according to certain boundary conditions. In the functions described below, the
boundary conditions can be selected using the mode parameter, which must be a string with the name of the boundary
condition. The following boundary conditions are currently supported:

2.13. Multidimensional image processing (scipy.ndimage) 261

SciPy Reference Guide, Release 1.8.0

mode description example

“nearest” use the value at the boundary [123]->[11233]
“wrap” periodically replicate the array [123]>[31231]
“reflect” reflect the array at the boundary [123]->[11233]
“mirror” mirror the array at the boundary [123]->[21232]
“constant” | use a constant value, defaultis 0.0 | [1 2 3]->[012 3 0]

The following synonyms are also supported for consistency with the interpolation routines:

mode description
“grid-constant” | equivalent to “constant”*
“grid-mirror” equivalent to “reflect”
“grid-wrap” equivalent to “wrap”

* “grid-constant” and “constant” are equivalent for filtering operations, but have different behavior in interpolation func-
tions. For API consistency, the filtering functions accept either name.

The “constant” mode is special since it needs an additional parameter to specify the constant value that should be used.

Note that modes mirror and reflect differ only in whether the sample at the boundary is repeated upon reflection. For
mode mirror, the point of symmetry is exactly at the final sample, so that value is not repeated. This mode is also known
as whole-sample symmetric since the point of symmetry falls on the final sample. Similarly, reflect is often refered to as
half-sample symmetric as the point of symmetry is half a sample beyond the array boundary.

Note: The easiest way to implement such boundary conditions would be to copy the data to a larger array and extend
the data at the borders according to the boundary conditions. For large arrays and large filter kernels, this would be very
memory consuming, and the functions described below, therefore, use a different approach that does not require allocating
large temporary buffers.

Correlation and convolution
* The correlateld function calculates a 1-D correlation along the given axis. The lines of the array along the
given axis are correlated with the given weights. The weights parameter must be a 1-D sequence of numbers.
¢ The function correlate implements multidimensional correlation of the input array with a given kernel.

e The convolveld function calculates a 1-D convolution along the given axis. The lines of the array along the
given axis are convoluted with the given weights. The weights parameter must be a 1-D sequence of numbers.

¢ The function convolve implements multidimensional convolution of the input array with a given kernel.

Note: A convolution is essentially a correlation after mirroring the kernel. As a result, the origin parameter behaves
differently than in the case of a correlation: the results is shifted in the opposite direction.

262 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

Smoothing filters

e The gaussian_filterid functionimplements a 1-D Gaussian filter. The standard deviation of the Gaussian
filter is passed through the parameter sigma. Setting order = 0 corresponds to convolution with a Gaussian kernel.
An order of 1, 2, or 3 corresponds to convolution with the first, second, or third derivatives of a Gaussian. Higher-
order derivatives are not implemented.

e The gaussian_filter function implements a multidimensional Gaussian filter. The standard deviations of
the Gaussian filter along each axis are passed through the parameter sigma as a sequence or numbers. If sigma
is not a sequence but a single number, the standard deviation of the filter is equal along all directions. The order
of the filter can be specified separately for each axis. An order of O corresponds to convolution with a Gaussian
kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second, or third derivatives of a Gaussian.
Higher-order derivatives are not implemented. The order parameter must be a number, to specify the same order
for all axes, or a sequence of numbers to specify a different order for each axis. The example below shows the filter
applied on test data with different values of sigma. The order parameter is kept at 0.

gaussian_filter gaussian_filter
Original sigma=1 sigma=3

Note: The multidimensional filter is implemented as a sequence of 1-D Gaussian filters. The intermediate arrays
are stored in the same data type as the output. Therefore, for output types with a lower precision, the results may
be imprecise because intermediate results may be stored with insufficient precision. This can be prevented by
specifying a more precise output type.

e The uniform filterld function calculates a 1-D uniform filter of the given size along the given axis.

e The uniform filter implements a multidimensional uniform filter. The sizes of the uniform filter are given
for each axis as a sequence of integers by the size parameter. If size is not a sequence, but a single number, the sizes
along all axes are assumed to be equal.

Note: The multidimensional filter is implemented as a sequence of 1-D uniform filters. The intermediate arrays
are stored in the same data type as the output. Therefore, for output types with a lower precision, the results may

2.13. Multidimensional image processing (scipy .ndimage) 263

SciPy Reference Guide, Release 1.8.0

be imprecise because intermediate results may be stored with insufficient precision. This can be prevented by
specifying a more precise output type.

Filters based on order statistics

The minimum_filter1d function calculates a 1-D minimum filter of the given size along the given axis.
The maximum_f1ilterld function calculates a 1-D maximum filter of the given size along the given axis.

The minimum_£1ilter function calculates a multidimensional minimum filter. Either the sizes of a rectangular
kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of sizes
or a single number, in which case the size of the filter is assumed to be equal along each axis. The footprint, if
provided, must be an array that defines the shape of the kernel by its non-zero elements.

The maximum_f£1iI1ter function calculates a multidimensional maximum filter. Either the sizes of a rectangular
kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of sizes
or a single number, in which case the size of the filter is assumed to be equal along each axis. The footprint, if
provided, must be an array that defines the shape of the kernel by its non-zero elements.

The rank_ filter function calculates a multidimensional rank filter. The rank may be less then zero, i.e., rank
= -1 indicates the largest element. Either the sizes of a rectangular kernel or the footprint of the kernel must be
provided. The size parameter, if provided, must be a sequence of sizes or a single number, in which case the size
of the filter is assumed to be equal along each axis. The foorprint, if provided, must be an array that defines the
shape of the kernel by its non-zero elements.

The percentile_filter function calculates a multidimensional percentile filter. The percentile may be less
then zero, i.e., percentile = -20 equals percentile = 80. Either the sizes of a rectangular kernel or the footprint of
the kernel must be provided. The size parameter, if provided, must be a sequence of sizes or a single number, in
which case the size of the filter is assumed to be equal along each axis. The footprint, if provided, must be an array
that defines the shape of the kernel by its non-zero elements.

The median_filter function calculates a multidimensional median filter. Either the sizes of a rectangular
kernel or the footprint of the kernel must be provided. The size parameter, if provided, must be a sequence of sizes
or a single number, in which case the size of the filter is assumed to be equal along each axis. The foorprint if
provided, must be an array that defines the shape of the kernel by its non-zero elements.

Derivatives

Derivative filters can be constructed in several ways. The function gaussian_filterid, described in Smoothing
filters, can be used to calculate derivatives along a given axis using the order parameter. Other derivative filters are the
Prewitt and Sobel filters:

* The prewitt function calculates a derivative along the given axis.

e The sobel function calculates a derivative along the given axis.

The Laplace filter is calculated by the sum of the second derivatives along all axes. Thus, different Laplace filters can
be constructed using different second-derivative functions. Therefore, we provide a general function that takes a function
argument to calculate the second derivative along a given direction.

¢ The function generic_laplace calculates a Laplace filter using the function passed through derivative?2

to calculate second derivatives. The function derivative?2 should have the following signature

derivative2 (input, axis, output, mode, cval, *extra_arguments, **extra_
—keywords)

264

Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

It should calculate the second derivative along the dimension axis. If output is not None, it should use that for the
output and return None, otherwise it should return the result. mode, cval have the usual meaning.

The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a dictionary
of named arguments that are passed to derivative?2 at each call.

For example

>>> def d2 (input, axis, output, mode, cval):
return correlateld(input, [1, -2, 1], axis, output, mode, cval, 0)

>>> a = np.zeros((5, 5))

>>> a2, 2] =1

>>> from scipy.ndimage import generic_laplace
>>> generic_laplace(a, d2)

array ([[O., 0., 0., 0., 0.7,
(0., 0., 1., 0., 0.1,
[0., 1., -4., 1., 0.1,
(0., 0., 1., 0., 0.1,
[0., 0., 0., 0., 0.10)

To demonstrate the use of the extra_arguments argument, we could do

>>> def d2 (input, axis, output, mode, cval, weights):
return correlateld(input, weights, axis, output, mode, cval, 0,)

>>> a = np.zeros((5, 5))

>>> a2, 2] =1
>>> generic_laplace(a, d2, extra_arguments = ([1, -2, 11,))
array ([[O., 0., 0., 0., 0.1,

(0., 0., 1., 0., 0.1,

[o0., 1., -4., 1., 0.1,

(0., 0., 1., 0., 0.1,

[0., 0., O., 0., O0.10
or
>>> generic_laplace(a, d2, extra_keywords = {'weights': [1, -2, 11})
array ([[O., 0., 0., 0., 0.1,

(0., 0., 1., 0., 0.1,

(0., 1., -4., 1., 0.1,

(0., 0., 1., 0., 0.1,

([0., 0., 0., 0., O0.10)

The following two functions are implemented using generic_laplace by providing appropriate functions for the
second-derivative function:

¢ The function 1aplace calculates the Laplace using discrete differentiation for the second derivative (i.e., convo-
lution with [1, -2, 11]).

* The function gaussian_laplace calculates the Laplace filter using gaussian_filter to calculate the
second derivatives. The standard deviations of the Gaussian filter along each axis are passed through the parameter
sigma as a sequence or numbers. If sigma is not a sequence but a single number, the standard deviation of the filter
is equal along all directions.

The gradient magnitude is defined as the square root of the sum of the squares of the gradients in all directions. Similar
to the generic Laplace function, there is a generic_gradient_magnitude function that calculates the gradient

2.13. Multidimensional image processing (scipy .ndimage) 265

SciPy Reference Guide, Release 1.8.0

magnitude of an array.

e The function generic_gradient_magnitude calculates a gradient magnitude using the function passed

through derivative to calculate first derivatives. The function derivative should have the following sig-
nature

derivative (input, axis, output, mode, cval, *extra_arguments, **extra_
—~keywords)

It should calculate the derivative along the dimension axis. If output is not None, it should use that for the output
and return None, otherwise it should return the result. mode, cval have the usual meaning.

The extra_arguments and extra_keywords arguments can be used to pass a tuple of extra arguments and a dictionary
of named arguments that are passed to derivative at each call.

For example, the sobe 1 function fits the required signature

>>> a = np.zeros((5, 5))

>>> a2, 2] =1

>>> from scipy.ndimage import sobel, generic_gradient_magnitude
>>> generic_gradient_magnitude (a, sobel)

array ([[O. , 0. , 0. , 0. , 0. 1,
[0. , 1.41421356, 2 , 1.41421356, O. 1,
[O. , 2. , 0. , 2. , 0. 1,
[O. , 1.41421356, 2. , 1.41421356, 0. 1,
[O. , 0. , O , 0. , 0. 11)

See the documentation of generic_laplace for examples of using the extra_arguments and extra_keywords
arguments.

The sobel and prewitt functions fit the required signature and can, therefore, be used directly with
generic_gradient_magnitude.

e The function gaussian_gradient_magnitude calculates the gradient magnitude using gaus-

sian_filter to calculate the first derivatives. The standard deviations of the Gaussian filter along each axis are
passed through the parameter sigma as a sequence or numbers. If sigma is not a sequence but a single number, the
standard deviation of the filter is equal along all directions.

Generic filter functions

To implement filter functions, generic functions can be used that accept a callable object that implements the filtering
operation. The iteration over the input and output arrays is handled by these generic functions, along with such details
as the implementation of the boundary conditions. Only a callable object implementing a callback function that does the
actual filtering work must be provided. The callback function can also be written in C and passed using a PyCapsule
(see Extending scipy.ndimage in C for more information).

e The generic_filterldfunctionimplements a generic 1-D filter function, where the actual filtering operation

must be supplied as a python function (or other callable object). The generic_filterld function iterates
over the lines of an array and calls function at each line. The arguments that are passed to function are
1-D arrays of the numpy . f1loat 64 type. The first contains the values of the current line. It is extended at the
beginning and the end, according to the filter_size and origin arguments. The second array should be modified
in-place to provide the output values of the line. For example, consider a correlation along one dimension:

>>> a = np.arange(12) .reshape (3, 4)
>>> correlateld(a, [1, 2, 31)
array ([[3, 8, 14, 171,

(continues on next page)

266

Chapter 2. SciPy User Guide

https://docs.python.org/dev/c-api/capsule.html#c.PyCapsule

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

(27, 32, 38, 417,
[51, 56, 62, 65]1])

The same operation can be implemented using generic_filterid, as follows:

>>> def fnc(iline, oline):
oline([...] = iline[:-2] + 2 * iline[l1l:-1] + 3 * iline[2:]

>>> from scipy.ndimage import generic_filterld
>>> generic_filterld(a, fnc, 3)
array ([[3, 8, 14, 17],

(27, 32, 38, 4171,

[51, 56, 62, 6511)

Here, the origin of the kernel was (by default) assumed to be in the middle of the filter of length 3. Therefore, each
input line had been extended by one value at the beginning and at the end, before the function was called.

Optionally, extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument

>>> def fnc(iline, oline, a, Db):
oline([...] = iline[:-2] + a * iline[l:-1] + b * iline[2:]

>>> generic_filterld(a, fnc, 3, extra_arguments = (2, 3))
array ([[3, 8, 14, 17],

(27, 32, 38, 417,

[51, 56, 62, 6511)

or

>>> generic_filterld(a, fnc, 3, extra_keywords = {'a':2, 'b':3})
array ([[3, 8, 14, 171,

(27, 32, 38, 41],

[51, 56, 62, 65]])

The generic_filter function implements a generic filter function, where the actual filtering operation must be
supplied as a python function (or other callable object). The generic_filter function iterates over the array
and calls function at each element. The argument of functionisa 1-D array of the numpy . float 64 type
that contains the values around the current element that are within the footprint of the filter. The function should
return a single value that can be converted to a double precision number. For example, consider a correlation:

>>> a = np.arange

>>> correlate (a,

array ([[O, 3,
[12, 15, 1
(28, 31, 3

(12) .reshape (3, 4)
(r1, o1, 10, 311)
7, 1171,
9, 231,
5, 3911)

The same operation can be implemented using generic_filter, as follows:

>>> def fnc (buffer):
return (buffer * np.array([1l, 31)) .sum()

(continues on next page)

2.13. Multidimensional image processing (scipy.ndimage) 267

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> from scipy.ndimage import generic_filter
>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 111)
array ([[0, 3, 7, 111,

(12, 15, 19, 231,

[28, 31, 35, 3911)

Here, a kernel footprint was specified that contains only two elements. Therefore, the filter function receives a
buffer of length equal to two, which was multiplied with the proper weights and the result summed.

When calling generic_filter, either the sizes of a rectangular kernel or the footprint of the kernel must be
provided. The size parameter, if provided, must be a sequence of sizes or a single number, in which case the size
of the filter is assumed to be equal along each axis. The footprint, if provided, must be an array that defines the
shape of the kernel by its non-zero elements.

Optionally, extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the parameters of our filter as an argument

>>> def fnc (buffer, weights):
weights = np.asarray (weights)
return (buffer * weights) .sum()

>>> generic_filter(a, fnc, footprint

= [[1, 0], [0, 1]1], extra_arguments.
= ([1, 31,))
array ([[O, 3, 7, 117,
[12, 15, 19, 23],
[28, 31, 35, 3911)
or
>>> generic_filter(a, fnc, footprint = [[1, 0], [0, 111, extra_keywords= {

—'weights': [1, 31})

array ([[O, 3, 7, 117,
(12, 15, 19, 231,
(28, 31, 35, 3911)

These functions iterate over the lines or elements starting at the last axis, i.e., the last index changes the fastest. This
order of iteration is guaranteed for the case that it is important to adapt the filter depending on spatial location. Here is an
example of using a class that implements the filter and keeps track of the current coordinates while iterating. It performs
the same filter operation as described above for generic_filter, but additionally prints the current coordinates:

>>>
>>>
>>>

a = np.arange (12) .reshape(3,4)

class fnc_class:
def _ _init__ (self, shape):
store the shape:
self.shape = shape
initialize the coordinates:
self.coordinates = [0] * len (shape)

def filter(self, buffer):
result = (buffer * np.array([1l, 3]1)) .sum()
print (self.coordinates)
calculate the next coordinates:

(continues on next page)

268

Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

axes = list (range(len(self.shape)))
axes.reverse ()
for jj in axes:

if self.coordinates[j]j] < self.shape[jj] - 1:
self.coordinates([jj] += 1
break

else:
self.coordinates[jj] = 0O

return result

>>> fnc = fnc_class (shape = (3,4))
>>> generic_filter(a, fnc.filter, footprint = [[1, 01, [0, 111)
0]

(@)

~ N N~ 0~

[EN
S

~

~

~ 0~

NN PO OO
~

~

N
~ ~
WN PO WNE O WwN

array([[O, 3, 7, 111,
[12, 15, 19, 23],
[28, 31, 35, 39]1)

For the generic_filterld function, the same approach works, except that this function does not iterate over the
axis that is being filtered. The example for generic_filterld then becomes this:

>>> a = np.arange(12) .reshape (3, 4)
>>>
>>> class fncld_class:
def _ _init__ (self, shape, axis = -1):
store the filter axis:
self.axis = axis

store the shape:

self.shape = shape

initialize the coordinates:
self.coordinates = [0] * len(shape)

def filter(self, iline, oline):
oline[...] = iline[:-2] + 2 * iline[l:-1] + 3 * iline[2:]
print (self.coordinates)
calculate the next coordinates:
axes = list(range(len(self.shape)))
skip the filter axis:
del axes[self.axis]
axes.reverse ()
for jj in axes:
if self.coordinates[j]j] < self.shapel[jj] - 1:

(continues on next page)

2.13. Multidimensional image processing (scipy .ndimage) 269

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

self.coordinates[jj] += 1
break

else:
self.coordinates[j]j] = 0

>>> fnc = fncld_class (shape = (3,4))
>>> generic_filterld(a, fnc.filter, 3)
[0, 0]
(1, 0]
[2, O]
array ([[3, 8, 14, 1771,

[27, 32, 38, 417,

[51, 56, 62, 6511)

Fourier domain filters

The functions described in this section perform filtering operations in the Fourier domain. Thus, the input array of such
a function should be compatible with an inverse Fourier transform function, such as the functions from the numpy . fft
module. We, therefore, have to deal with arrays that may be the result of a real or a complex Fourier transform. In
the case of a real Fourier transform, only half of the of the symmetric complex transform is stored. Additionally, it
needs to be known what the length of the axis was that was transformed by the real fft. The functions described here
provide a parameter n that, in the case of a real transform, must be equal to the length of the real transform axis before
transformation. If this parameter is less than zero, it is assumed that the input array was the result of a complex Fourier
transform. The parameter axis can be used to indicate along which axis the real transform was executed.

e The fourier_ shift function multiplies the input array with the multidimensional Fourier transform of a shift
operation for the given shift. The shift parameter is a sequence of shifts for each dimension or a single value for all
dimensions.

e The fourier gaussian function multiplies the input array with the multidimensional Fourier transform of
a Gaussian filter with given standard deviations sigma. The sigma parameter is a sequence of values for each
dimension or a single value for all dimensions.

e The fourier_uniform function multiplies the input array with the multidimensional Fourier transform of a
uniform filter with given sizes size. The size parameter is a sequence of values for each dimension or a single value
for all dimensions.

e The fourier_ellipsoid function multiplies the input array with the multidimensional Fourier transform of
an elliptically-shaped filter with given sizes size. The size parameter is a sequence of values for each dimension or
a single value for all dimensions. This function is only implemented for dimensions 1, 2, and 3.

2.13.4 Interpolation functions

This section describes various interpolation functions that are based on B-spline theory. A good introduction to B-splines

can be found in' with detailed algorithms for image interpolation given in°.

I M. Unser, “Splines: A Perfect Fit for Signal and Image Processing,” IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, November
1999.

5 T. Briand and P. Monasse, “Theory and Practice of Image B-Spline Interpolation”, Image Processing On Line, 8, pp. 99-141, 2018. https:
//doi.org/10.5201/ipol.2018.221

270 Chapter 2. SciPy User Guide

https://numpy.org/devdocs/reference/routines.fft.html#module-numpy.fft
https://doi.org/10.5201/ipol.2018.221
https://doi.org/10.5201/ipol.2018.221

SciPy Reference Guide, Release 1.8.0

Spline pre-filters

Interpolation using splines of an order larger than 1 requires a pre-filtering step. The interpolation functions described
in section Interpolation functions apply pre-filtering by calling spline filter, but they can be instructed not to do
this by setting the prefilter keyword equal to False. This is useful if more than one interpolation operation is done on the
same array. In this case, it is more efficient to do the pre-filtering only once and use a pre-filtered array as the input of
the interpolation functions. The following two functions implement the pre-filtering:

e The spline_filterld function calculates a 1-D spline filter along the given axis. An output array can option-
ally be provided. The order of the spline must be larger than 1 and less than 6.

e The spline_filter function calculates a multidimensional spline filter.

Note: The multidimensional filter is implemented as a sequence of 1-D spline filters. The intermediate arrays are
stored in the same data type as the output. Therefore, if an output with a limited precision is requested, the results
may be imprecise because intermediate results may be stored with insufficient precision. This can be prevented by
specifying a output type of high precision.

Interpolation boundary handling

The interpolation functions all employ spline interpolation to effect some type of geometric transformation of the input
array. This requires a mapping of the output coordinates to the input coordinates, and therefore, the possibility arises that
input values outside the boundaries may be needed. This problem is solved in the same way as described in Filter functions
for the multidimensional filter functions. Therefore, these functions all support a mode parameter that determines how
the boundaries are handled, and a cval parameter that gives a constant value in case that the ‘constant’ mode is used. The
behavior of all modes, including at non-integer locations is illustrated below. Note the boundaries are not handled the
same for all modes; reflect (aka grid-mirror) and grid-wrap involve symmetry or repetition about a point that is half way
between image samples (dashed vertical lines) while modes mirror and wrap treat the image as if it’s extent ends exactly
at the first and last sample point rather than 0.5 samples past it.

The coordinates of image samples fall on integer sampling locations in the range from 0 to shape [i] - 1 along each
axis, i. The figure below illustrates the interpolation of a point at location (3.7, 3.3) within an image of shape (7,
7) . For an interpolation of order n, n + 1 samples are involved along each axis. The filled circles illustrate the sampling
locations involved in the interpolation of the value at the location of the red x.

Interpolation functions

e The geometric_transformfunctionapplies an arbitrary geometric transform to the input. The given mapping
function is called at each point in the output to find the corresponding coordinates in the input. mapping must be
a callable object that accepts a tuple of length equal to the output array rank and returns the corresponding input
coordinates as a tuple of length equal to the input array rank. The output shape and output type can optionally be
provided. If not given, they are equal to the input shape and type.

For example:

>>> a = np.arange(l12) .reshape (4, 3) .astype (np.float64)
>>> def shift_func (output_coordinates):
return (output_coordinates[0] - 0.5, output_coordinates[1l] - 0.5)

>>> from scipy.ndimage import geometric_transform
>>> geometric_transform(a, shift_func)
array ([[O. , 0. , 0. 1,

(continues on next page)

2.13. Multidimensional image processing (scipy.ndimage) 271

SciPy Reference Guide, Release 1.8.0

mode=constant, order=0

mode=constant, order=1

mode=constant, order=3

2.5 1 E
0.0 A E
=251 T T T — T T T T T T T T T
mode=grid-constant, order=0 mode=grid-constant, order=1 mode=grid-constant, order=3
2.5 4 b
0.0 |
-2.51- T r r — T r r r r T r r r
mode=nearest, order=0 mode=nearest, order=1 mode=nearest, order=3
2.5 1 E
0.0 A E
=251 T T T — = T T T T T T T T T
mode=reflect, order=0 mode=reflect, order=1 mode=reflect, order=3
2.5]]]]
1 1 1 1 1 1
1 1 1 1 1 1
0.0 1 1 1 1 1 1 1 1
1 1 1 1 1 1
—25414 T T —! — T T —! T T T T —! T
mode=mirror, order=0 mode=mirror, order=1 mode=mirror, order=3
2.5 1 1 E 1 1
1 1 1
1 1 1 1 1 1
0.0 1 1 1) 1 1 1 1
1 1 1
-2.51 r . : — r . : . . r . : .
mode=wrap, order=0 mode=wrap, order=1 mode=wrap, order=3
2.5 4 b
0.0 A E
=251+ T T T — T T T T T T T T T
mode=grid-wrap, order=0 mode=grid-wrap, order=1 mode=grid-wrap, order=3
2.5]]]]]
1 1 1 1
0.0 A E
1 1 1 1
—25414 T T T — L T —! T T L T —! T
-2 0 2 4 6 -2 0 2 4 6 -2 0 2 4 6
Interpolation (order = 2) Interpolation (order = 3)
1 2 3 4 5 6 0 1 2 3 4 5 6
0 o o o o o o 0 o o o o o o o
14 o o o o [¢] [¢] 14 o o o o [¢] [¢] [¢]
2 A o [J [J [J [¢] [¢] 2 A o o [J [J [J [J [¢]
31 o [J [J [J [¢] [¢] 31 o o [J [J [J [J [¢]
X X
4 o [J [} [} o o 4 o o [} [} [] [] o
5 o o (¢} (¢} o o 5 o o [} [} [] [] o
6 o o (¢} (¢} o o 6 o o [¢] [¢] o o o
272 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

, 1.3625, 2.7375],
, 4.8125, 6.1875],
, 8.2625, 9.6375]])

o O O

Optionally, extra arguments can be defined and passed to the filter function. The extra_arguments and ex-
tra_keywords arguments can be used to pass a tuple of extra arguments and/or a dictionary of named arguments
that are passed to derivative at each call. For example, we can pass the shifts in our example as arguments

>>> def shift_func(output_coordinates, s0, sl1):

return (output_coordinates[0] - s0, output_coordinates[l] - sl)
>>> geometric_transform(a, shift_func, extra_arguments = (0.5, 0.5))
array ([[O. , 0. , 0. 1,

[O. , 1.3625, 2.73757,

[O. , 4.8125, 6.18757,

[O , 8.2625, 9.637511)
or
>>> geometric_transform(a, shift_func, extra_keywords = {'s0': 0.5, 'sl':.
—~0.5})
array ([[O. , 0. , 0. 1,

[O. , 1.3625, 2.737517,

[O. , 4.8125, 6.1875]7,

[O. , 8.2625, 9.637511)

Note: The mapping function can also be written in C and passed usinga scipy.LowLevelCallable. See
Extending scipy.ndimage in C for more information.

¢ The function map_coordinates applies an arbitrary coordinate transformation using the given array of co-
ordinates. The shape of the output is derived from that of the coordinate array by dropping the first axis. The
parameter coordinates is used to find for each point in the output the corresponding coordinates in the input. The
values of coordinates along the first axis are the coordinates in the input array at which the output value is found.
(See also the numarray coordinates function.) Since the coordinates may be non- integer coordinates, the value of
the input at these coordinates is determined by spline interpolation of the requested order.

Here is an example that interpolates a 2D array at (0.5, 0.5) and (1, 2):

>>> a = np.arange(12) .reshape (4, 3) .astype (np.floatb64)

>>> a

array([[©O., 1., 2.1,
[3., 4., 5.1,
[6., 7., 8.1,

[9., 10., 11.11)
>>> from scipy.ndimage import map_coordinates
>>> map_coordinates(a, [[0.5, 21, [0.5, 111)
array ([1.3625, 7.1)

e The affine_transformfunction applies an affine transformation to the input array. The given transformation
matrix and offset are used to find for each point in the output the corresponding coordinates in the input. The
value of the input at the calculated coordinates is determined by spline interpolation of the requested order. The
transformation matrix must be 2-D or can also be given as a 1-D sequence or array. In the latter case, it is assumed

2.13. Multidimensional image processing (scipy.ndimage) 273

SciPy Reference Guide, Release 1.8.0

that the matrix is diagonal. A more efficient interpolation algorithm is then applied that exploits the separability of
the problem. The output shape and output type can optionally be provided. If not given, they are equal to the input
shape and type.

e The shi ft function returns a shifted version of the input, using spline interpolation of the requested order.
e The zoom function returns a rescaled version of the input, using spline interpolation of the requested order.

* The rotate function returns the input array rotated in the plane defined by the two axes given by the parameter
axes, using spline interpolation of the requested order. The angle must be given in degrees. If reshape is true, then
the size of the output array is adapted to contain the rotated input.

2.13.5 Morphology
Binary morphology

e The generate_binary_structure functions generates a binary structuring element for use in binary mor-
phology operations. The rank of the structure must be provided. The size of the structure that is returned is equal
to three in each direction. The value of each element is equal to one if the square of the Euclidean distance from the
element to the center is less than or equal to connectivity. For instance, 2-D 4-connected and 8-connected structures
are generated as follows:

>>> from scipy.ndimage import generate_binary_structure
>>> generate_binary_structure (2, 1)
array ([[False, True, False],
[True, True, True],
[False, True, False]], dtype=bool)
>>> generate_binary_structure (2, 2)
array ([[True, True, True],
[True, True, True],
[True, True, Truel]], dtype=bool)

Most binary morphology functions can be expressed in terms of the basic operations erosion and dilation.

e The binary_erosion function implements binary erosion of arrays of arbitrary rank with the given struc-
turing element. The origin parameter controls the placement of the structuring element, as described in Filter
Junctions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The border_value parameter gives the value of the array outside bound-
aries. The erosion is repeated iterations times. If iterations is less than one, the erosion is repeated until the result
does not change anymore. If a mask array is given, only those elements with a true value at the corresponding mask
element are modified at each iteration.

e The hinary dilation function implements binary dilation of arrays of arbitrary rank with the given struc-
turing element. The origin parameter controls the placement of the structuring element, as described in Filter
Sfunctions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The border_value parameter gives the value of the array outside bound-
aries. The dilation is repeated iterations times. If iterations is less than one, the dilation is repeated until the result
does not change anymore. If a mask array is given, only those elements with a true value at the corresponding mask
element are modified at each iteration.

Here is an example of using binary_dilation to find all elements that touch the border, by repeatedly dilating an
empty array from the border using the data array as the mask:

>>> struct = np.array ([[0, 1, O] 1

4 [14 14 117
>>> a = np.array([[1,0,0,0,0], [1,1,0,

1 (0, 1]
0], (0,0,1,1,01, 10,0,0,0,011)

(continues on next page)

274 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

(1, o, o, 0, 0J,
(1, 12, o, 1, 01,
(o, o, 1, 1, 01,
(0, 0, 0, 0, 011)

>>> from scipy.ndimage import binary_dilation
>>> binary_dilation (np.zeros(a.shape), struct, -1, a, border_value=1)
array ([[True, False, False, False, False],

[True, True, False, False, False]
[False, False, False, False, False]
[False, False, False, False, False]

14

1, dtype=bool)

The binary_erosionand binary_dilation functions both have an iterations parameter, which allows the ero-
sion or dilation to be repeated a number of times. Repeating an erosion or a dilation with a given structure n times is
equivalent to an erosion or a dilation with a structure that is n-/ times dilated with itself. A function is provided that
allows the calculation of a structure that is dilated a number of times with itself:

e The iterate_structure function returns a structure by dilation of the input structure iteration - 1 times with
itself.

For instance:

>>> struct = generate_binary_structure (2, 1)
>>> struct
array ([[False, True, False],
[True, True, True],
[False, True, False]], dtype=bool)
>>> from scipy.ndimage import iterate_structure
>>> iterate_structure (struct, 2)
array ([[False, False, True, False, False]
[False, True, True, True, False]
[True, True, True, True, True],
[False, True, True, True, False],
[False, False, True, False, False]], dtype=bool)
If the origin of the original structure is equal to 0, then it is
also equal to 0 for the iterated structure. If not, the origin
must also be adapted if the equivalent of the *iterations*
erosions or dilations must be achieved with the iterated
structure. The adapted origin is simply obtained by multiplying
with the number of iterations. For convenience, the
:func: iterate_structure also returns the adapted origin if the
origin parameter is not °~ “None

code:: python

>>> iterate_structure(struct, 2, -1)
(array ([[False, False, True, False, False]
False, True, True, True, False]
True, True, True, True, True],
False, True, True, True, False]
False, False, True, False, False]

[
[
[’

[], dtype=bool), [-2, -2])

Other morphology operations can be defined in terms of erosion and dilation. The following functions provide a few of

2.13. Multidimensional image processing (scipy.ndimage) 275

SciPy Reference Guide, Release 1.8.0

these operations for convenience:

e The binary_opening function implements binary opening of arrays of arbitrary rank with the given struc-
turing element. Binary opening is equivalent to a binary erosion followed by a binary dilation with the same
structuring element. The origin parameter controls the placement of the structuring element, as described in Fil-
ter functions. If no structuring element is provided, an element with connectivity equal to one is generated using
generate_binary_structure. The iterations parameter gives the number of erosions that is performed
followed by the same number of dilations.

* The binary_ closing function implements binary closing of arrays of arbitrary rank with the given structuring
element. Binary closing is equivalent to a binary dilation followed by a binary erosion with the same structuring
element. The origin parameter controls the placement of the structuring element, as described in Filter func-
tions. If no structuring element is provided, an element with connectivity equal to one is generated using gener—
ate_binary_structure. The iterations parameter gives the number of dilations that is performed followed
by the same number of erosions.

e The binary_fill_holes function is used to close holes in objects in a binary image, where the structure
defines the connectivity of the holes. The origin parameter controls the placement of the structuring element, as
described in Filter functions. If no structuring element is provided, an element with connectivity equal to one is
generated using generate_binary structure.

e The binary hit_or miss function implements a binary hit-or-miss transform of arrays of arbitrary rank
with the given structuring elements. The hit-or-miss transform is calculated by erosion of the input with the first
structure, erosion of the logical not of the input with the second structure, followed by the logical and of these two
erosions. The origin parameters control the placement of the structuring elements, as described in Filter functions.
If origin2 equals None, it is set equal to the originl parameter. If the first structuring element is not provided,
a structuring element with connectivity equal to one is generated using generate_binary structure. If
structure2 is not provided, it is set equal to the logical not of structurel.

Grey-scale morphology

Grey-scale morphology operations are the equivalents of binary morphology operations that operate on arrays with arbi-
trary values. Below, we describe the grey-scale equivalents of erosion, dilation, opening and closing. These operations are
implemented in a similar fashion as the filters described in Filter functions, and we refer to this section for the description
of filter kernels and footprints, and the handling of array borders. The grey-scale morphology operations optionally take a
structure parameter that gives the values of the structuring element. If this parameter is not given, the structuring element
is assumed to be flat with a value equal to zero. The shape of the structure can optionally be defined by the footprint
parameter. If this parameter is not given, the structure is assumed to be rectangular, with sizes equal to the dimensions of
the structure array, or by the size parameter if structure is not given. The size parameter is only used if both structure and
footprint are not given, in which case the structuring element is assumed to be rectangular and flat with the dimensions
given by size. The size parameter, if provided, must be a sequence of sizes or a single number in which case the size of
the filter is assumed to be equal along each axis. The footprint parameter, if provided, must be an array that defines the
shape of the kernel by its non-zero elements.

Similarly to binary erosion and dilation, there are operations for grey-scale erosion and dilation:
e The grey_erosion function calculates a multidimensional grey-scale erosion.
e The grey_dilation function calculates a multidimensional grey-scale dilation.
Grey-scale opening and closing operations can be defined similarly to their binary counterparts:

e The grey_opening function implements grey-scale opening of arrays of arbitrary rank. Grey-scale opening is
equivalent to a grey-scale erosion followed by a grey-scale dilation.

e The grey_closing function implements grey-scale closing of arrays of arbitrary rank. Grey-scale opening is
equivalent to a grey-scale dilation followed by a grey-scale erosion.

276 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

e The morphological_gradient function implements a grey-scale morphological gradient of arrays of arbi-
trary rank. The grey-scale morphological gradient is equal to the difference of a grey-scale dilation and a grey-scale
erosion.

e The morphological_laplace function implements a grey-scale morphological laplace of arrays of arbitrary
rank. The grey-scale morphological laplace is equal to the sum of a grey-scale dilation and a grey-scale erosion
minus twice the input.

e The white_tophat function implements a white top-hat filter of arrays of arbitrary rank. The white top-hat is
equal to the difference of the input and a grey-scale opening.

e The hlack_tophat function implements a black top-hat filter of arrays of arbitrary rank. The black top-hat is
equal to the difference of a grey-scale closing and the input.

2.13.6 Distance transforms

Distance transforms are used to calculate the minimum distance from each element of an object to the background.
The following functions implement distance transforms for three different distance metrics: Euclidean, city block, and
chessboard distances.

e The function distance_transform_cdt uses a chamfer type algorithm to calculate the distance transform
of the input, by replacing each object element (defined by values larger than zero) with the shortest distance to
the background (all non-object elements). The structure determines the type of chamfering that is done. If
the structure is equal to ‘cityblock’, a structure is generated using generate_binary_structure with a
squared distance equal to 1. If the structure is equal to ‘chessboard’, a structure is generated using gener—
ate_binary_structure with a squared distance equal to the rank of the array. These choices correspond to
the common interpretations of the city block and the chessboard distance metrics in two dimensions.

In addition to the distance transform, the feature transform can be calculated. In this case, the index of the closest
background element is returned along the first axis of the result. The return_distances, and return_indices flags can
be used to indicate if the distance transform, the feature transform, or both must be returned.

The distances and indices arguments can be used to give optional output arrays that must be of the correct size and
type (both numpy . int 32). The basics of the algorithm used to implement this function are described in.

¢ The function distance_transform_edt calculates the exact Euclidean distance transform of the input, by
replacing each object element (defined by values larger than zero) with the shortest Euclidean distance to the back-
ground (all non-object elements).

In addition to the distance transform, the feature transform can be calculated. In this case, the index of the closest
background element is returned along the first axis of the result. The refurn_distances and return_indices flags can
be used to indicate if the distance transform, the feature transform, or both must be returned.

Optionally, the sampling along each axis can be given by the sampling parameter, which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes.

The distances and indices arguments can be used to give optional output arrays that must be of the correct size and
type (numpy . float 64 and numpy . int 32).The algorithm used to implement this function is described in®.

e The function distance_transform bf uses a brute-force algorithm to calculate the distance transform of
the input, by replacing each object element (defined by values larger than zero) with the shortest distance to the

”

background (all non-object elements). The metric must be one of “euclidean”, “cityblock”, or “chessboard”.

In addition to the distance transform, the feature transform can be calculated. In this case, the index of the closest
background element is returned along the first axis of the result. The refurn_distances and return_indices flags can
be used to indicate if the distance transform, the feature transform, or both must be returned.

2G. Borgefors, “Distance transformations in arbitrary dimensions.”, Computer Vision, Graphics, and Image Processing, 27:321-345, 1984.
3 C.R. Maurer, Jr., R. Qi, and V. Raghavan, “A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary
dimensions.” IEEE Trans. PAMI 25, 265-270, 2003.

2.13. Multidimensional image processing (scipy.ndimage) 277

SciPy Reference Guide, Release 1.8.0

Optionally, the sampling along each axis can be given by the sampling parameter, which should be a sequence of
length equal to the input rank, or a single number in which the sampling is assumed to be equal along all axes. This
parameter is only used in the case of the Euclidean distance transform.

The distances and indices arguments can be used to give optional output arrays that must be of the correct size and
type (numpy . float 64 and numpy . int32).

Note: This function uses a slow brute-force algorithm, the function distance_transform cdt can
be used to more efficiently calculate city block and chessboard distance transforms. The function dis-—
tance_transform_edt can be used to more efficiently calculate the exact Euclidean distance transform.

2.13.7 Segmentation and labeling

Segmentation is the process of separating objects of interest from the background. The most simple approach is, probably,
intensity thresholding, which is easily done with numpy functions:

>>> a = np.array([[1,2,2,1,1,0],
(0,2,3,1,2,0],
(1,1,1,3,3,21,
[1,1 1,2,111)

~
~

>>> np.where (a >
array ([[0, 1,

~

1
(0, 1, 1
(0, 0, O,
[0, 0, O

14

~
O OO Ok kP Wwid
L e L ~— N

~

o~

14 4

The result is a binary image, in which the individual objects still need to be identified and labeled. The function label
generates an array where each object is assigned a unique number:

» The Iabel function generates an array where the objects in the input are labeled with an integer index. It returns a
tuple consisting of the array of object labels and the number of objects found, unless the output parameter is given,
in which case only the number of objects is returned. The connectivity of the objects is defined by a structuring
element. For instance, in 2D using a 4-connected structuring element gives:

>>> a = np.array([([(0,1,1,0,0,01,00,1,2,0,2,01,1(0,0,0,2,1,11,([0,0,0,0,1,
=011)

>>> s = [[O, 1, O], [1,1,1), [0,1,0]]

>>> from scipy.ndimage import label

>>> label (a, s)

(array([((o, 12, 12, 0, 0, 01,
(o, 1, 1, 0o, 2, 01,
(o, o, o, 2, 2, 21,
(o, 0, 0, 0, 2, 011), 2)

These two objects are not connected because there is no way in which we can place the structuring element, such
that it overlaps with both objects. However, an 8-connected structuring element results in only a single object:

>>> a = np.array(([0,1,1,0,0,0],(0,2,1,0,1,01,(0,0,0,1,2,1]1,10,0,0,0,1,
—011)

>>> s = [[1,1,1], [1,1,11, [1,1,1]1]

>>> label (a, s)[0]

array([[O, 21, 1, 0, 0, O],

(continues on next page)

278 Chapter 2. SciPy User Guide

https://numpy.org/devdocs/reference/index.html#module-numpy

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

If no structuring element is provided, one is generated by calling generate_binary structure (see Binary
morphology) using a connectivity of one (which in 2D is the 4-connected structure of the first example). The input
can be of any type, any value not equal to zero is taken to be part of an object. This is useful if you need to ‘re-label’
an array of object indices, for instance, after removing unwanted objects. Just apply the label function again to the
index array. For instance:

>>> 1, n = label([1, 0, 1, 0, 1])

>>> 1

array ([1, 0, 2, 0, 31])

>>> 1 = np.where(l != 2, 1, 0)
>>> 1

array([1, 0, 0, 0, 31)
>>> label (1) [0]
array ([1, 0, 0, 0, 2])

Note: The structuring element used by 1abe is assumed to be symmetric.

There is a large number of other approaches for segmentation, for instance, from an estimation of the borders of the objects
that can be obtained by derivative filters. One such approach is watershed segmentation. The function watershed_ift
generates an array where each object is assigned a unique label, from an array that localizes the object borders, generated,
for instance, by a gradient magnitude filter. It uses an array containing initial markers for the objects:

e The watershed_ift function applies a watershed from markers algorithm, using Image Foresting Transform,
as described in”.

 The inputs of this function are the array to which the transform is applied, and an array of markers that designate
the objects by a unique label, where any non-zero value is a marker. For instance:

>>> input np.array([([(o, o, o, o, o, 0, 0],
o, 12, 1, 1, 1, 1, 01,
¢, 12, o, o, o, 1, 01,
¢, 12, o, o, o, 1, 01,
o, 1, o, 0, 0, 1, 01,
o, 12, 1, 1, 1, 1, 01,
B (o, o, o, 0, 0, 0, 0]1, np.uint8)
>>> markers = np.array([([(1, O, 0O, 0, 0, 0, O],
ro, o, o, o, o, 0, 01,
(o, o, o, o, 0o, 0, 01,
(o, o, o, 2, 0, 0, 01,
(o, o, o, o, 0o, 0, 01,
(o, o, o, o, o, 0, 01,
N (o, o, o, 0, 0, 0, 0]1, np.int8)
>>> from scipy.ndimage import watershed_ift
>>> watershed_ift (input, markers)
array([([2, 2, 2, 21, 1, 1, 17,

(continues on next page)

4 A. X. Falcio, J. Stolfi, and R. A. Lotufo. “The image foresting transform: Theory, algorithms, and applications.” TEEE Trans. PAMI 26, 19-29.
2004.

2.13. Multidimensional image processing (scipy.ndimage) 279

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

~
~
~
~
~

~
~
~
~
~

~
~
~
~

~
~
~
~
~

SRR
~
RN
N
NN NN
N
NN NN
~
NN NN
I S S SIS
N
B PR e e e

~

r
], dtype=int8)

~
~
~
~

Here, two markers were used to designate an object (marker = 2) and the background (marker = 1). The order in
which these are processed is arbitrary: moving the marker for the background to the lower-right corner of the array

yields a different result:

>>> markers = np.array([[O0O, O, O, 0, 0, O,
(o, o, o, 0, 0, 0O,
(o, o, o, o, 0, 0O,
(o, o, o, 2, 0, 0,
(o, o, o, o, 0, 0O,
(o, o, o, o, 0, 0O,
R (o, o, o, o, 0, 0O,
>>> watershed_ift (input, markers)
array (T[22, 21, 2, 21, 1, 1, 11,
r+, 1, 1, 1, 1, 1, 11,
(¢, 1, 2, 2, 2, 1, 11,
(¢, 1, 2, 2, 2, 1, 11,
(1, 1, 2, 2, 2, 1, 11,
r«, 1, 1, 1, 1, 1, 11,
1, 1, 1, 1, 1, 1, 111, dtype=int8)

The result is that the object (marker = 2) is smaller because the second marker was processed earlier. This may
not be the desired effect if the first marker was supposed to designate a background object. Therefore, water—
shed_1ift treats markers with a negative value explicitly as background markers and processes them after the
normal markers. For instance, replacing the first marker by a negative marker gives a result similar to the first

example:
>>> markers = np.array([[O0, O, 0O, 0, 0, O,
(o, o, o, o, 0, 0,
(o, o, o, o, o, o,
(o, o, o, 2, 0, 0O,
(o, o, o, 0, 0, O,
(o, o, o, o, 0, 0O,
. (o, o, o, o, 0, 0O,
>>> watershed_ift (input, markers)
array([([-21, -1, -1, -1, -1, -1, -11,
(-1, -1, 2, 2, 2, -1, -11,
-1, 2, 2, 2, 2, 2, -11,
-1, 2, 2, 2, 2, 2, -11,
(-1, 2, 2, 2, 2, 2, -11,
(-1, -1, 2, 2, 2, -1, -1]
(-1, -1, -1, -1, -1, -1,]

O O O O O o
e e e e e
~

~ 0~

~

~

o~
f—
~

np.int8)

The connectivity of the objects is defined by a structuring element. If no structuring element is provided, one is
generated by calling generate binary structure (see Binary morphology) using a connectivity of one
(which in 2D is a 4-connected structure.) For example, using an 8-connected structure with the last example yields

a different object:

280

Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

>>> watershed_ift (input, markers,

structure = [[1,1,11, [1,1,1], [1,1,110)
, -1, -1, -
r 2/ 2/

4

array ([

~

~

~

4 4

~
~

~
~
~
~

|
e
BN DN N e
N
BN NN e
~

~

~
NN DN
~ ~
=N N
~ 0~

NN

~

|

[N

~
~

Note: The implementation of watershed_ift limits the data types of the input to numpy.uint8 and
numpy .uintl6.

2.13.8 Object measurements

Given an array of labeled objects, the properties of the individual objects can be measured. The find_objects
function can be used to generate a list of slices that for each object, give the smallest sub-array that fully contains the
object:

» The find_objects function finds all objects in a labeled array and returns a list of slices that correspond to the
smallest regions in the array that contains the object.

For instance:

>>> g = np.array(((o,1,1,0,0,01,100,1,2,0,2,01,(0,0,0,1,2,121,([00,0,0,0,1,
=011)

>>> 1, n = label(a)

>>> from scipy.ndimage import find_objects

>>> f = find_objects (1)

>>> g [f

array ([

array (

[

[

[

>>> al[f[
[[

[

[

The function find_ob ject s returns slices for all objects, unless the max_label parameter is larger then zero, in
which case only the first max_label objects are returned. If an index is missing in the label array, None is return
instead of a slice. For example:

>>> from scipy.ndimage import find_ objects
>>> find_objects([1, 0, 3, 4], max_label = 3)
[(slice (0, 1, None),), None, (slice (2, 3, None),)]

The list of slices generated by find_objects is useful to find the position and dimensions of the objects in the array,
but can also be used to perform measurements on the individual objects. Say, we want to find the sum of the intensities
of an object in image:

>>> image = np.arange (4 * 6).reshape (4, 6)
>>> mask = np-arraY([[Ol lr 1/ OI O, O]I [OI 1/ j-I Or j—r O]I [OI Or Ol lr 1/ 1]/ [Or OI OI OI j-I O]])

(continues on next page)

2.13. Multidimensional image processing (scipy.ndimage) 281

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> Jlabels = label (mask) [0]
>>> slices = find_objects (labels)

Then we can calculate the sum of the elements in the second object:

>>> np.where (labels[slices[1]] == 2, image[slices[1]], 0).sum()
80

That is, however, not particularly efficient and may also be more complicated for other types of measurements. Therefore,
a few measurements functions are defined that accept the array of object labels and the index of the object to be measured.
For instance, calculating the sum of the intensities can be done by:

>>> from scipy.ndimage import sum as ndi_sum
>>> ndi_sum(image, labels, 2)
80

For large arrays and small objects, it is more efficient to call the measurement functions after slicing the array:

>>> ndi_sum(image[slices[1]], labels[slices[1l]1, 2)
80

Alternatively, we can do the measurements for a number of labels with a single function call, returning a list of results.
For instance, to measure the sum of the values of the background and the second object in our example, we give a list of
labels:

>>> ndi_sum(image, labels, [0, 21])
array ([178.0, 80.01])

The measurement functions described below all support the index parameter to indicate which object(s) should be mea-
sured. The default value of index is None. This indicates that all elements where the label is larger than zero should be
treated as a single object and measured. Thus, in this case the labels array is treated as a mask defined by the elements that
are larger than zero. If index is a number or a sequence of numbers it gives the labels of the objects that are measured.
If index is a sequence, a list of the results is returned. Functions that return more than one result return their result as a
tuple if index is a single number, or as a tuple of lists if index is a sequence.

¢ The sum function calculates the sum of the elements of the object with label(s) given by index, using the labels
array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object.
If label is None, all elements of input are used in the calculation.

» The mean function calculates the mean of the elements of the object with label(s) given by index, using the labels
array for the object labels. If index is None, all elements with a non-zero label value are treated as a single object.
If label is None, all elements of input are used in the calculation.

e The variance function calculates the variance of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

e The standard_deviationfunction calculates the standard deviation of the elements of the object with label(s)
given by index, using the labels array for the object labels. If index is None, all elements with a non-zero label
value are treated as a single object. If label is None, all elements of input are used in the calculation.

e The minimum function calculates the minimum of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

282 Chapter 2. SciPy User Guide

https://docs.python.org/dev/library/functions.html#sum

SciPy Reference Guide, Release 1.8.0

e The maximum function calculates the maximum of the elements of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

e The minimum_position function calculates the position of the minimum of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero
label value are treated as a single object. If label is None, all elements of input are used in the calculation.

e The maximum_position function calculates the position of the maximum of the elements of the object with
label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-zero
label value are treated as a single object. If label is None, all elements of input are used in the calculation.

e The ext rema function calculates the minimum, the maximum, and their positions, of the elements of the object
with label(s) given by index, using the labels array for the object labels. If index is None, all elements with a non-
zero label value are treated as a single object. If label is None, all elements of input are used in the calculation. The
result is a tuple giving the minimum, the maximum, the position of the minimum, and the position of the maximum.
The result is the same as a tuple formed by the results of the functions minimum, maximum, minimum_position,
and maximum_position that are described above.

e The center_of_mass function calculates the center of mass of the object with label(s) given by index, using
the labels array for the object labels. If index is None, all elements with a non-zero label value are treated as a
single object. If label is None, all elements of input are used in the calculation.

e The histogram function calculates a histogram of the object with label(s) given by index, using the labels array
for the object labels. If index is None, all elements with a non-zero label value are treated as a single object. If
label is None, all elements of input are used in the calculation. Histograms are defined by their minimum (min),
maximum (max), and the number of bins (bins). They are returned as 1-D arrays of type numpy.int32.

2.13.9 Extending scipy.ndimage in C

A few functions in scipy.ndimage take a callback argument. This can be either a python function or a scipy.
LowLevelCallable containing a pointer to a C function. Using a C function will generally be more efficient, since
it avoids the overhead of calling a python function on many elements of an array. To use a C function, you must write
a C extension that contains the callback function and a Python function that returns a scipy. LowLevelCallable
containing a pointer to the callback.

An example of a function that supports callbacks is geomet ric_transform, which accepts a callback function that
defines a mapping from all output coordinates to corresponding coordinates in the input array. Consider the following
python example, which uses geomet ric_transformtoimplement a shift function.

from scipy import ndimage

def transform(output_coordinates, shift):

input_coordinates = output_coordinates[0] - shift, output_coordinates[1] -
— shift

return input_coordinates

im = np.arange (12) .reshape (4, 3) .astype(np.float64)
shift = 0.5
print (ndimage.geometric_transform(im, transform, extra_arguments=(shift,)))

We can also implement the callback function with the following C code:

/* example.c */

#include <Python.h>

(continues on next page)

2.13. Multidimensional image processing (scipy .ndimage) 283

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

#include <numpy/npy_common.h>

static int
_transform(npy_intp *output_coordinates, double *input_coordinates,
int output_rank, int input_rank, wvoid *user_data)

npy_intp 1i;
double shift = * (double *)user_data;

for (i = 0; i < input_rank; i++) {
input_coordinates[i] = output_coordinates([i] - shift;
}

return 1;

static char *transform_signature = "int (npy_intp *, double *, int, int, void.
=*) "
static PyObject *
py_get_transform (PyObject *obj, PyObject *args)
{
if (!PyArg_ParseTuple(args, "")) return NULL;
return PyCapsule_New (_transform, transform_signature, NULL);

static PyMethodDef ExampleMethods[] = {
{"get_transform", (PyCFunction)py_get_transform, METH_VARARGS, ""},
{NULL, NULL, 0O, NULL}

}i

/* Initialize the module */
static struct PyModuleDef example = {
PyModuleDef_ HEAD_INIT,
"example",
NULL,
-1,
ExampleMethods,
NULL,
NULL,
NULL,
NULL
bi

PyMODINIT_FUNC
PyInit_example (void)
{

return PyModule_Create (&example);

More information on writing Python extension modules can be found here. If the C code is in the file example . c, then
it can be compiled with the following setup.py,

284 Chapter 2. SciPy User Guide

https://docs.python.org/2/extending/extending.html

SciPy Reference Guide, Release 1.8.0

from distutils.core import setup, Extension
import numpy

shift = Extension('example',
['example.c']

r
include_dirs=[numpy.get_include ()]

setup (name="'example',
ext_modules=[shift]

and now running the script

import ctypes
import numpy as np
from scipy import ndimage, LowLevelCallable

from example import get_transform
shift = 0.5

user_data = ctypes.c_double (shift)

ptr = ctypes.cast (ctypes.pointer (user_data), ctypes.c_void_p)
callback = LowLevelCallable (get_transform(), ptr)

im = np.arange(12) .reshape (4, 3) .astype(np.float64)

print (ndimage.geometric_transform(im, callback))

produces the same result as the original python script.

In the C version, _transform is the callback function and the parameters output_coordinates and in-
put_coordinates play the same role as they do in the python version, while output_rank and input_rank
provide the equivalents of len (output_coordinates) and len (input_coordinates). The variable
shift is passed through user_data instead of extra_arguments. Finally, the C callback function returns an
integer status, which is one upon success and zero otherwise.

The function py_transform wraps the callback function in a PyCapsule. The main steps are:
* Initialize a PyCapsule. The first argument is a pointer to the callback function.
* The second argument is the function signature, which must match exactly the one expected by ndimage.
e Above, we used scipy.LowLevelCallable to specify user_data that we generated with ctypes.

A different approach would be to supply the data in the capsule context, that can be set by PyCapsule_SetContext
and omit specifying user_datain scipy.LowLevelCallable. However, in this approach we would need
to deal with allocation/freeing of the data — freeing the data after the capsule has been destroyed can be done by
specifying a non-NULL callback function in the third argument of PyCapsule_New.

C callback functions for ndimage all follow this scheme. The next section lists the ndimage functions that accept a C
callback function and gives the prototype of the function.

See also:
The functions that support low-level callback arguments are:

generic_filter,generic_filterld, geometric_transform

2.13. Multidimensional image processing (scipy .ndimage) 285

https://docs.python.org/dev/c-api/capsule.html#c.PyCapsule
https://docs.python.org/dev/c-api/capsule.html#c.PyCapsule
https://docs.python.org/dev/library/ctypes.html#module-ctypes

SciPy Reference Guide, Release 1.8.0

Below, we show alternative ways to write the code, using Numba, Cython, ctypes, or cffi instead of writing wrapper code
in C.

Numba

Numba provides a way to write low-level functions easily in Python. We can write the above using Numba as:

example.py

import numpy as np

import ctypes

from scipy import ndimage, LowLevelCallable
from numba import cfunc, types, carray

@cfunc (types.intc (types.CPointer (types.intp),
types.CPointer (types.double),
types.intc,
types.intc,
types.voidptr))
def transform(output_coordinates_ptr, input_coordinates_ptr,
output_rank, input_rank, user_data):
input_coordinates = carray (input_coordinates_ptr, (input_rank,))
output_coordinates = carray (output_coordinates_ptr, (output_rank,))
shift = carray(user_data, (1,), types.double) [0]

for i in range (input_rank) :
input_coordinates[i] = output_coordinates[i] - shift

return 1
shift = 0.5

Then call the function

user_data = ctypes.c_double (shift)

ptr = ctypes.cast (ctypes.pointer (user_data), ctypes.c_void_p)
callback = LowLevelCallable(transform.ctypes, ptr)

im =

np.arange (12) .reshape (4, 3) .astype(np.float64)
print (ndimage.geometric_transform(im, callback))

Cython

Functionally the same code as above can be written in Cython with somewhat less boilerplate as follows:

example.pyx
from numpy cimport npy_intp as intp

cdef api int transform(intp *output_coordinates, double *input_coordinates,
int output_rank, int input_rank, void *user_data):
cdef intp i
cdef double shift = (<double *>user_data) [0]

(continues on next page)

286 Chapter 2. SciPy User Guide

https://numba.pydata.org/
https://cython.org/
https://docs.python.org/3/library/ctypes.html
https://cffi.readthedocs.io/
https://numba.pydata.org/

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

for i in range (input_rank) :
input_coordinates[i] = output_coordinates[i] - shift
return 1

script.py

import ctypes
import numpy as np
from scipy import ndimage, LowLevelCallable

import example
shift = 0.5

user_data = ctypes.c_double (shift)

ptr = ctypes.cast (ctypes.pointer (user_data), ctypes.c_void_p)
callback = LowLevelCallable.from_cython (example, "transform", ptr)
im = np.arange(12) .reshape (4, 3) .astype(np.float64)

print (ndimage.geometric_transform(im, callback))

cffi

With cffi, you can interface with a C function residing in a shared library (DLL). First, we need to write the shared library,
which we do in C — this example is for Linux/OSX:

J*
example.c
Needs to be compiled with "gcc -std=c99 -shared —-fPIC -o example.so example.
NI
or similar

*/
#include <stdint.h>

int
_transform(intptr_t *output_coordinates, double *input_coordinates,
int output_rank, int input_rank, wvoid *user_data)

int i;
double shift = * (double *)user_data;

for (i = 0; i < input_rank; i++) {
input_coordinates[i] = output_coordinates([i] - shift;
}

return 1;

The Python code calling the library is:

import os
import numpy as np

(continues on next page)

2.13. Multidimensional image processing (scipy.ndimage) 287

https://cffi.readthedocs.io/

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

from scipy import ndimage, LowLevelCallable
import cffi

Construct the FFI object, and copypaste the function declaration

ffi = cf£fi.FFI()

ffi.cdef ("""

int _transform(intptr_t *output_coordinates, double *input_coordinates,

int output_rank, int input_rank, void *user_data);
mn ")

Open library
lib = ffi.dlopen (os.path.abspath("example.so"))

Do the function call

user_data = ffi.new('double *', 0.5)

callback = LowLevelCallable(lib._transform, user_data)
im = np.arange(12) .reshape (4, 3) .astype(np.float6d)
print (ndimage.geometric_transform(im, callback))

You can find more information in the cffi documentation.

ctypes

With ctypes, the C code and the compilation of the so/DLL is as for cffi above. The Python code is different:

script.py

import os

import ctypes

import numpy as np

from scipy import ndimage, LowLevelCallable

lib = ctypes.CDLL (os.path.abspath ('example.so'))
shift = 0.5

user_data = ctypes.c_double (shift)
ptr = ctypes.cast (ctypes.pointer (user_data), ctypes.c_void_p)

Ctypes has no built-in intptr type, so override the signature
instead of trying to get it via ctypes
callback = LowLevelCallable(lib._transform, ptr,

"int _transform(intptr_t *, double *, int, int, void *)")

Perform the call
im = np.arange (12) .reshape (4, 3).astype(np.float64)
print (ndimage.geometric_transform(im, callback))

You can find more information in the ctypes documentation.

288 Chapter 2. SciPy User Guide

https://cffi.readthedocs.io/
https://docs.python.org/3/library/ctypes.html

SciPy Reference Guide, Release 1.8.0

2.13.10 References
2.14 File 10 (scipy.io)

See also:

NumPy IO routines

2.14.1 MATLAB files

1oadmat(file_name[, mdict, appendmat]) Load MATLARB file.

savema t(file_name, mdict[, appendmat, ...]) Save a dictionary of names and arrays into a MATLAB-
style .mat file.

whosmat(file_name[, appendmat]) List variables inside a MATLAB file.

The basic functions

We'll start by importing scipy. io and calling it sio for convenience:

>>> import scipy.io as sio

If you are using IPython, try tab-completing on sio. Among the many options, you will find:

sio.loadmat
sio.savemat
sio.whosmat

These are the high-level functions you will most likely use when working with MATLAB files. You’ll also find:

sio.matlab

This is the package from which 1oadmat, savemat, and whosmat are imported. Within sio.matlab, you will
find the mio module This module contains the machinery that 1oadmat and savemat use. From time to time you
may find yourself re-using this machinery.

How do | start?

You may have a .mat file that you want to read into SciPy. Or, you want to pass some variables from SciPy / NumPy
into MATLAB.

To save us using a MATLAB license, let’s start in Octave. Octave has MATLAB-compatible save and load functions.
Start Octave (octave at the command line for me):

octave:1> a = 1:12
a:

octave:2> a = reshape(a, [1 3 41])
a =

(continues on next page)

2.14. File 10 (scipy.io) 289

https://www.numpy.org/devdocs/reference/routines.io.html
https://www.gnu.org/software/octave

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

ans(:,:,1) =

ans(:,:,2) =

ans(:,:,3) =

ans(:,:,4) =

10 11 12
octave:3> save -6 octave_a.mat a % MATLAB 6 compatible
octave:4> 1ls octave_a.mat
octave_a.mat

Now, to Python:

>>> mat_contents = sio.loadmat ('octave_a.mat')
>>> mat_contents
{'a': array([[[1., 4., 7., 10.7,
[2., 5., 8., 11.1,
[3., 6., 9., 12.111),
' wversion_ ': '1.0"',
'__header_ ': 'MATLAB 5.0 MAT-file, written by
Octave 3.6.3, 2013-02-17 21:02:11 UTC',
' __globals__': []}
>>> oct_a = mat_contents['a']
>>> oct_a
array ([[[4., 7., 10.1,

1.,
[2., 5., 8., 11.1,
[3., 6., 9., 12.111)
>>> oct_a.shape
(1, 3, 4)

Now let’s try the other way round:

>>> import numpy as np

>>> vect = np.arange(10)
>>> vect.shape
(10,)

>>> sio.savemat ('np_vector.mat', {'vect':vect})

Then back to Octave:

octave:8> load np_vector.mat
octave: 9> vect
vect =

(continues on next page)

290

Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

octave:10> size (vect)
ans =

1 10

If you want to inspect the contents of a MATLAB file without reading the data into memory, use the whosmat command:

>>> sio.whosmat ('octave_a.mat')
[('a', (1, 3, 4), 'double')]

whosmat returns a list of tuples, one for each array (or other object) in the file. Each tuple contains the name, shape and
data type of the array.

MATLAB structs

MATLAB structs are a little bit like Python dicts, except the field names must be strings. Any MATLAB object can be a
value of a field. As for all objects in MATLAB, structs are, in fact, arrays of structs, where a single struct is an array of
shape (1, 1).

octave:11> my_struct = struct('fieldl', 1, 'field2', 2)
my_struct =
{

fieldl = 1

field2

Il
)

octave:12> save -6 octave_struct.mat my_struct

We can load this in Python:

>>> mat_contents = sio.loadmat ('octave_struct.mat')
>>> mat_contents
{'my_struct': array ([[([[2.0]], [[2.0]1)11,
dtype=[('fieldl', 'O0'), ('field2', 'O0"'")1]), '__version__': '1.0', '__
—~header__': 'MATLAB 5.0 MAT-file, written by Octave 3.6.3, 2013-02-17_
—21:23:14 UTC', '__globals__': []}
>>> oct_struct = mat_contents|['my_struct']
>>> oct_struct.shape
(1, 1)
>>> val = oct_struct[0,0]
>>> val
(rr1.o011, rrz2.011)
>>> val['fieldl"]
array ([[1.11)
>>> val['field2']
array ([[2.11)
>>> val.dtype
dtype ([('fieldl', '0'"), ('field2', '0")1)

2.14. File 10 (scipy.io) 291

SciPy Reference Guide, Release 1.8.0

In the SciPy versions from 0.12.0, MATLAB structs come back as NumPy structured arrays, with fields named for the
struct fields. You can see the field names in the dt ype output above. Note also:

>>> val = oct_struct[0,0]

and:

octave:13> size (my_struct)
ans =

So, in MATLAB, the struct array must be at least 2-D, and we replicate that when we read into SciPy. If you want all
length 1 dimensions squeezed out, try this:

>>> mat_contents = sio.loadmat ('octave_struct.mat', squeeze_me=True)
>>> oct_struct = mat_contents['my_struct']
>>> oct_struct.shape

0

Sometimes, it’s more convenient to load the MATLAB structs as Python objects rather than NumPy structured ar-
rays - it can make the access syntax in Python a bit more similar to that in MATLAB. In order to do this, use the
struct_as_record=False parameter setting to loadmat.

>>> mat_contents = sio.loadmat ('octave_struct.mat', struct_as_record=False)
>>> oct_struct = mat_contents['my_struct']

>>> oct_struct[0,0].fieldl

array ([[1.11)

struct_as_record=False works nicely with squeeze_me:

>>> mat_contents = sio.loadmat ('octave_struct.mat', struct_as_record=False, .
—squeeze_me=True)

>>> oct_struct = mat_contents['my_struct']

>>> oct_struct.shape # but no - it's a scalar

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'mat_struct' object has no attribute 'shape'
>>> type (oct_struct)
<class 'scipy.io.matlab.mio5_params.mat_struct'>
>>> oct_struct.fieldl
1.0

Saving struct arrays can be done in various ways. One simple method is to use dicts:

>>> a_dict = {'fieldl': 0.5, 'field2': 'a string'}
>>> sio.savemat ('saved_struct.mat', {'a_dict': a_dict})
loaded as:

octave:21> load saved_struct
octave:22> a_dict
a_dict =

scalar structure containing the fields:

(continues on next page)

292 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

field2 = a string
fieldl = 0.50000

You can also save structs back again to MATLAB (or Octave in our case) like this:

>>> dt = [('f1', 'f£8"), ('f2', 'S10")]
>>> arr = np.zeros((2,), dtype=dt)
>>> arr
array ([(0.0, ""), (0.0, "")I1,
dtype=[('f1', '<f8'"), ('f2', 'S10")1])
>>> arr[0]["f1'] = 0.5
>>> arr[0]['f2'] = 'python'
>>> arr[1]["'f1'] = 99
>>> arr[1]['f2'] = 'not perl'
>>> sio.savemat ('np_struct_arr.mat', {'arr': arr})

MATLARB cell arrays

Cell arrays in MATLAB are rather like Python lists, in the sense that the elements in the arrays can contain any type of
MATLAB object. In fact, they are most similar to NumPy object arrays, and that is how we load them into NumPy.

octave:14> my_cells = {1, [2, 31}

my_cells =
{
[1,11 = 1
(1,21 =
2 3
}

octave:15> save -6 octave_cells.mat my_cells

Back to Python:

>>> mat_contents = sio.loadmat ('octave_cells.mat')
>>> oct_cells = mat_contents['my_cells']

>>> print (oct_cells.dtype)

object

>>> val = oct_cells[0,0]

>>> val

array ([[1.11)

>>> print (val.dtype)

float64

Saving to a MATLAB cell array just involves making a NumPy object array:

>>> obj_arr = np.zeros((2,), dtype=np.object)
>>> obj_arr[0] =1
>>> obj_arr[l] = 'a string'

(continues on next page)

2.14. File 10 (scipy.io) 293

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> obj_arr
array ([1, 'a string'], dtype=object)

>>> sio.savemat ('np_cells.mat', {'obj_arr':obj_arr})
octave:16> load np_cells.mat
octave:17> obj_arr
obj_arr =
{
[1,11 = 1
[2,1] = a string
}
2.14.2 IDL files
readsav(file_name], idict, python_dict, ...]) Read an IDL .sav file.
2.14.3 Matrix Market files
mminfo(source) Return size and storage parameters from Matrix Market
file-like 'source'.
mmread(source) Reads the contents of a Matrix Market file-like 'source’
into a matrix.
mmwr1te(target, a[, comment, field, ...]) Writes the sparse or dense array a to Matrix Market file-

like target.

2.14.4 Wav sound files (scipy.io.wavfile)

read(filename[, mmap]) Open a WAV file.
write(filename, rate, data) Write a NumPy array as a WAV file.

2.14.5 Arff files (scipy.io.arff)

loadarff(f) Read an arff file.

294 Chapter 2. SciPy User Guide

SciPy Reference Guide, Release 1.8.0

2.14.6 Netcdf

netcdf_file(filename[, mode, mmap, version, ...]) A file object for NetCDF data.

Allows reading of NetCDF files (version of pupynere package)

2.14. File 10 (scipy.io) 295

https://pypi.org/project/pupynere/

SciPy Reference Guide, Release 1.8.0

296 Chapter 2. SciPy User Guide

CHAPTER
THREE

SCIPY API

3.1 Importing from SciPy

In Python the distinction between what is the public API of a library and what are private implementation details is
not always clear. Unlike in other languages like Java, it is possible in Python to access “private” function or objects.
Occasionally this may be convenient, but be aware that if you do so your code may break without warning in future
releases. Some widely understood rules for what is and isn’t public in Python are:

¢ Methods / functions / classes and module attributes whose names begin with a leading underscore are private.

* If a class name begins with a leading underscore, none of its members are public, whether or not they begin with a
leading underscore.

 If a module name in a package begins with a leading underscore none of its members are public, whether or not
they begin with a leading underscore.

* If a module or package defines __all__, that authoritatively defines the public interface.

 If a module or package doesn’t define __all__, then all names that don’t start with a leading underscore are
public.

Note: Reading the above guidelines one could draw the conclusion that every private module or object starts with an
underscore. This is not the case; the presence of underscores do mark something as private, but the absence of underscores
do not mark something as public.

In SciPy there are modules whose names don’t start with an underscore, but that should be considered private. To clarify
which modules these are, we define below what the public API is for SciPy, and give some recommendations for how to
import modules/functions/objects from SciPy.

3.2 Guidelines for importing functions from SciPy

The scipy namespace itself only contains functions imported from numpy. These functions still exist for backwards
compatibility, but should be imported from numpy directly.

Everything in the namespaces of scipy submodules is public. In general, it is recommended to import functions from
submodule namespaces. For example, the function curve_fit (defined in scipy/optimize/_minpack_py.py) should be
imported like this:

from scipy import optimize
result = optimize.curve_fit(...)

297

SciPy Reference Guide, Release 1.8.0

This form of importing submodules is preferred for all submodules except scipy.io (because io is also the name of
a module in the Python stdlib):

from scipy import interpolate
from scipy import integrate
import scipy.io as spio

In some cases, the public API is one level deeper. For example, the scipy.sparse.linalg module is public, and
the functions it contains are not available in the scipy.sparse namespace. Sometimes it may result in more easily
understandable code if functions are imported from one level deeper. For example, in the following it is immediately
clear that 1omax is a distribution if the second form is chosen:

first form
from scipy import stats
stats.lomax(...)

second form
from scipy.stats import distributions
distributions.lomax(...)

In that case, the second form can be chosen if it is documented in the next section that the submodule in question is public.

3.3 API definition

Every submodule listed below is public. That means that these submodules are unlikely to be renamed or changed in an
incompatible way, and if that is necessary, a deprecation warning will be raised for one SciPy release before the change
is made.

e scipy.cluster
— scipy.cluster.vg
- scipy.cluster.hierarchy
* scipy.constants
* scipy.fft
e scipy.fftpack
* scipy.integrate
* scipy.interpolate
* scipy.io
- scipy.io.arff
- scipy.io.matlab
- scipy.io.wavfile

* scipy.linalg

scipy.linalg.blas

scipy.linalg.cython_blas

scipy.linalg.lapack

scipy.linalg.cython_lapack

298 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

— scipy.linalg.interpolative

* scipy.misc
* scipy.ndimage
* scipy.odr
* scipy.optimize
* scipy.signal
— scipy.signal.windows
* scipy.sparse
— scipy.sparse.linalg
— scipy.sparse.csgraph
* scipy.spatial

— scipy.spatial.distance

— scipy.spatial.transform

* scipy.special

* scipy.stats

— scipy.stats.contingency

— scipy.stats.distributions

— scipy.stats.mstats
— scipy.stats.qgmc

— scipy.stats.sampling

3.3.1 Clustering package (scipy.cluster)

scipy.cluster.vqg

Clustering algorithms are useful in information theory, target detection, communications, compression, and other areas.
The vg module only supports vector quantization and the k-means algorithms.

scipy.cluster.hierarchy

The hierarchy module provides functions for hierarchical and agglomerative clustering. Its features include generating
hierarchical clusters from distance matrices, calculating statistics on clusters, cutting linkages to generate flat clusters, and

visualizing clusters with dendrograms.

3.3.2 K-means clustering and vector quantization (scipy.cluster.vq)

Provides routines for k-means clustering, generating code books from k-means models and quantizing vectors by com-

paring them with centroids in a code book.

whiten(obs[, check_finite])

Normalize a group of observations on a per feature basis.

vg(obs, code_book[, check_finite])

Assign codes from a code book to observations.

kmeans(obs, k_or_guess[, iter, thresh, ...])

Performs k-means on a set of observation vectors forming
k clusters.

continues on next page

3.3. API definition

299

SciPy Reference Guide, Release 1.8.0

Table 1 - continued from previous page
kmeans2(data, K[, iter, thresh, minit, ...]) Classify a set of observations into k clusters using the k-
means algorithm.

scipy.cluster.vg.whiten

scipy.cluster.vqg.whiten (obs, check_finite=True)
Normalize a group of observations on a per feature basis.

Before running k-means, it is beneficial to rescale each feature dimension of the observation set by its standard
deviation (i.e. “whiten” it - as in “white noise” where each frequency has equal power). Each feature is divided by
its standard deviation across all observations to give it unit variance.

Parameters
obs [ndarray] Each row of the array is an observation. The columns are the features seen during

each observation.

>>> # f0 £l £2

>>> obs = [[1., 1., 1.1, #00
L 2., 2.y 2.1, #ol
[3., 3., 3.1, #02
[4., 4., 4.7] #03

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default: True

Returns

result [ndarray] Contains the values in obs scaled by the standard deviation of each column.

Examples

>>> from scipy.cluster.vqg import whiten

>>> features = np.array([[1.9, 2.3, 1.7],
[1.5, 2.5, 2.271,
[0.8, 0.6, 1.7,11)

>>> whiten (features)
array ([[4.17944278, 2.69811351, 7.21248917],
[3.29956009, 2.93273208, 9.33380951],
[1.75976538, 0.7038557 , 7.21248917]11])

scipy.cluster.vq.vq
scipy.cluster.vq.vq (obs, code_book, check_finite=True)
Assign codes from a code book to observations.

Assigns a code from a code book to each observation. Each observation vector in the ‘M’ by ‘N’ obs array is
compared with the centroids in the code book and assigned the code of the closest centroid.

The features in obs should have unit variance, which can be achieved by passing them through the whiten function.
The code book can be created with the k-means algorithm or a different encoding algorithm.

300 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Parameters
obs [ndarray] Each row of the ‘M’ x ‘N’ array is an observation. The columns are the “features”
seen during each observation. The features must be whitened first using the whiten function
or something equivalent.
code_book

[ndarray] The code book is usually generated using the k-means algorithm. Each row of the
array holds a different code, and the columns are the features of the code.

>>> # o f1 2 £3

>>> code_book = [
[1., 2., 3., 4.1, #coO
[1., 2., 3., 4.1, #cl
[1., 2., 3., 4.11 #c2

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default: True

Returns
code [ndarray] A length M array holding the code book index for each observation.
dist [ndarray] The distortion (distance) between the observation and its nearest code.
Examples

>>> from numpy import array
>>> from scipy.cluster.vqg import vg

>>> code_book = array([[1.,1.,1.]1,
[2.,2.,2.11)

>>> features = array([[1.9,2.3,1.7],
[1.5,2.5,2.27,
[0.8,0.6,1.711)

>>> vqg(features, code_book)
(array([1, 1, 0],'i"), array([0.43588989, 0.73484692, 0.83066239]))

scipy.cluster.vq.kmeans

scipy.cluster.vqg.kmeans (obs, k_or_guess, iter=20, thresh=1e-05, check_finite=True, *, seed=None)
Performs k-means on a set of observation vectors forming k clusters.

The k-means algorithm adjusts the classification of the observations into clusters and updates the cluster centroids
until the position of the centroids is stable over successive iterations. In this implementation of the algorithm, the
stability of the centroids is determined by comparing the absolute value of the change in the average Euclidean
distance between the observations and their corresponding centroids against a threshold. This yields a code book
mapping centroids to codes and vice versa.

Parameters
obs [ndarray] Each row of the M by N array is an observation vector. The columns are the
features seen during each observation. The features must be whitened first with the whiten
function.

3.3. API definition 301

SciPy Reference Guide, Release 1.8.0

k_or_guess

iter

thresh

[int or ndarray] The number of centroids to generate. A code is assigned to each centroid,
which is also the row index of the centroid in the code_book matrix generated.

The initial k centroids are chosen by randomly selecting observations from the observation
matrix. Alternatively, passing a k by N array specifies the initial k centroids.

[int, optional] The number of times to run k-means, returning the codebook with the lowest
distortion. This argument is ignored if initial centroids are specified with an array for the
k_or_guess parameter. This parameter does not represent the number of iterations of
the k-means algorithm.

[float, optional] Terminates the k-means algorithm if the change in distortion since the last
k-means iteration is less than or equal to threshold.

check_finite

seed

Returns

codebook

distortion

See also:

kmeans2

[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default: True
[{None, int, numpy . random.Generator,]

numpy . random.RandomState}, optional
Seed for initializing the pseudo-random number generator. If seed is None (or numpy .
random), the numpy . random.RandomState singleton is used. If seed is an int, a
new RandomState instance is used, seeded with seed. If seed is already a Generator
or RandomState instance then that instance is used. The default is None.

[ndarray] A k by N array of k centroids. The ith centroid codebook[i] is represented with the
code i. The centroids and codes generated represent the lowest distortion seen, not necessarily
the globally minimal distortion. Note that the number of centroids is not necessarily the same
as the k_or_guess parameter, because centroids assigned to no observations are removed
during iterations.

[float] The mean (non-squared) Euclidean distance between the observations passed and the
centroids generated. Note the difference to the standard definition of distortion in the context
of the k-means algorithm, which is the sum of the squared distances.

a different implementation of k-means clustering with more methods for generating initial centroids but without
using a distortion change threshold as a stopping criterion.

whiten

must be called prior to passing an observation matrix to kmeans.

Notes

For more functionalities or optimal performance, you can use sklearn.cluster. KMeans. This is a benchmark result
of several implementations.

302

Chapter 3. SciPy API

https://numpy.org/devdocs/reference/random/generator.html#numpy.random.Generator
https://numpy.org/devdocs/reference/random/legacy.html#numpy.random.RandomState
https://numpy.org/devdocs/reference/random/index.html#module-numpy.random
https://numpy.org/devdocs/reference/random/index.html#module-numpy.random
https://numpy.org/devdocs/reference/random/legacy.html#numpy.random.RandomState
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html#comparison-of-high-performance-implementations

SciPy Reference Guide, Release 1.8.0

Examples

>>> from numpy import array

>>> features = array([[1.9

~ N 0~ 0~

~

~

OoODN O O O o

[
[
[
[
[
[
[

~

... [1.
>>> whitened = whiten (feature
>>> book = np.array((whitened
>>> kmeans (whitened, book)

~

O W O N B B o Ul
~
— 0 P PO P Ok ONIDN

O~ .

>>> from scipy.cluster.vq import vq,
>>> import matplotlib.pyplot as plt
.31,

.5

kmeans, whiten

4
4

4

’

4

]
]
]
i
]
]
]
]

1)

],whitened[2]))

>>> pts = 50

(array ([[2.3110306 , 2.86287398]7, # random

[0.93218041, 1.2439869111), 0.85684700941625547)
>>> codes = 3
>>> kmeans (whitened, codes)
(array([[2.3110306 , 2.86287398], # random

[1.32544402, 0.656075297,

[0.40782893, 2.0278690711), 0.5196582527686241)
>>> # Create 50 datapoints in two clusters a and b

>>>
>>>
>>>
>>>

>>> rng = np.random.default_rng()
>>> a = rng.multivariate_normal ([0, 01, [[4, 11, [1, 411,
>>> b = rng.multivariate_normal ([30, 10],
(1o, 21, 2, 111,

.. size=pts)
>>> features = np.concatenate((a, b))
>>> # Whiten data
>>> whitened = whiten (features)
>>> # Find 2 clusters in the data
>>> codebook, distortion = kmeans (whitened, 2)

Plot whitened data and cluster centers in red
plt.scatter (whitened[:, 0], whitened[:, 11])
plt.scatter (codebook[:, 0], codebook[:, 1],
plt.show ()

c='r")

size=pts)

3.3. API definition

303

SciPy Reference Guide, Release 1.8.0

[) ..
1.5 ¢
°® [)
1.0 - ()
0.5 A ®
<,

0.0 A .ﬁ e

—0.5 A ’. ()

0.0 0.5 1.0 1.5 2.0 2.5

scipy.cluster.vq.kmeans2

scipy.cluster.vqg.kmeans2 (data, k, iter=10, thresh=1e-05, minit="random’, missing="warn’,
check_finite=True, *, seed=None)
Classify a set of observations into k clusters using the k-means algorithm.

The algorithm attempts to minimize the Euclidean distance between observations and centroids. Several initializa-
tion methods are included.

Parameters

data [ndarray] A ‘M’ by ‘N’ array of ‘M’ observations in ‘N’ dimensions or a length ‘M’ array of
‘M’ 1-D observations.

k [int or ndarray] The number of clusters to form as well as the number of centroids to generate.
If minit initialization string is ‘matrix’, or if a ndarray is given instead, it is interpreted as initial
cluster to use instead.

iter [int, optional] Number of iterations of the k-means algorithm to run. Note that this differs
in meaning from the iters parameter to the kmeans function.

thresh [float, optional] (not used yet)

minit [str, optional] Method for initialization. Available methods are ‘random’, ‘points’, ‘“++ and
‘matrix’:

‘random’: generate k centroids from a Gaussian with mean and variance estimated from the
data.

‘points’: choose k observations (rows) at random from data for the initial centroids.
‘++’: choose k observations accordingly to the kmeans++ method (careful seeding)
‘matrix’: interpret the k parameter as a k by M (or length k array for 1-D data) array of initial
centroids.

missing [str, optional] Method to deal with empty clusters. Available methods are ‘warn’ and ‘raise’:
‘warn’: give a warning and continue.
‘raise’: raise an ClusterError and terminate the algorithm.

check_finite
[bool, optional] Whether to check that the input matrices contain only finite numbers. Dis-
abling may give a performance gain, but may result in problems (crashes, non-termination)
if the inputs do contain infinities or NaNs. Default: True

seed [{None, int, numpy . random.Generator,]

numpy . random.RandomState}, optional

304 Chapter 3. SciPy API

https://numpy.org/devdocs/reference/random/generator.html#numpy.random.Generator
https://numpy.org/devdocs/reference/random/legacy.html#numpy.random.RandomState

SciPy Reference Guide, Release 1.8.0

Seed for initializing the pseudo-random number generator. If seed is None (or numpy .
random), the numpy . random.RandomState singleton is used. If seed is an int, a
new RandomState instance is used, seeded with seed. If seed is already a Generator
or RandomState instance then that instance is used. The default is None.

Returns

centroid [ndarray] A k’ by ‘N’ array of centroids found at the last iteration of k-means.
label [ndarray] label[i] is the code or index of the centroid the ith observation is closest to.

See also:

kmeans

References

(1]

Examples

>>> from scipy.cluster.vqg import kmeans2
>>> import matplotlib.pyplot as plt

Create z, an array with shape (100, 2) containing a mixture of samples from three multivariate normal distributions.

>>> rng = np.random.default_rng()
>>> a = rng.multivariate_normal ([0, 61, [[2, 11, [1, 1.5]]1, size=4D5)
>>> b = rng.multivariate_normal([2, 0], [[1, -1]1, [-1, 311, size=30)
>>> ¢ = rng.multivariate_normal ([6, 41, [[5, 01, [0, 1.2]1], size=25)
>>> z = np.concatenate((a, b, c¢))

>>> rng.shuffle(z)

Compute three clusters.

>>> centroid, label = kmeans2(z, 3, minit='points')
>>> centroid
array ([[2.22274463, -0.61666946], # may vary

[0.54069047, 5.86541444],
[6.73846769, 4.0199189811])

How many points are in each cluster?

>>> counts = np.bincount (label)
>>> counts
array ([29, 51, 20]) # may vary

Plot the clusters.

>>> w0 = z[label == 0]
>>> wl = z[label == 1]
>>> w2 = z[label == 2]
>>> plt.plot (wO[: 0], wO[:, 1], 'o', alpha=0.5, label='cluster 0")
>>> plt.plot (wll[: 0], wif[:, 1], 'd', alpha=0.5, label='cluster 1'")
>>> plt.plot (w2[: 01, w2[:, 11, 's', alpha=0.5, label='cluster 2")

(continues on next page)

3.3. API definition 305

https://numpy.org/devdocs/reference/random/index.html#module-numpy.random
https://numpy.org/devdocs/reference/random/index.html#module-numpy.random
https://numpy.org/devdocs/reference/random/legacy.html#numpy.random.RandomState

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> plt.plot (centroid([:, 0], centroid[:, 1], 'k*', label='centroids')
>>> plt.axis('equal')

>>> plt.legend (shadow=True)

>>> plt.show ()

8 -
FELFH‘ o
6 %‘:{g% 0
4 1 . = O @?2)@' 8
2 - 0
OO ©® cluster0
0 * cluster 1
-2 cluster 2
* centroids
_4 - : : : | |
-5 0 5 10 15

Background information

The k-means algorithm takes as input the number of clusters to generate, k, and a set of observation vectors to cluster.
It returns a set of centroids, one for each of the k clusters. An observation vector is classified with the cluster number or
centroid index of the centroid closest to it.

A vector v belongs to cluster i if it is closer to centroid i than any other centroid. If v belongs to i, we say centroid
i is the dominating centroid of v. The k-means algorithm tries to minimize distortion, which is defined as the sum of
the squared distances between each observation vector and its dominating centroid. The minimization is achieved by
iteratively reclassifying the observations into clusters and recalculating the centroids until a configuration is reached in
which the centroids are stable. One can also define a maximum number of iterations.

Since vector quantization is a natural application for k-means, information theory terminology is often used. The centroid
index or cluster index is also referred to as a “code” and the table mapping codes to centroids and, vice versa, is often
referred to as a “code book”. The result of k-means, a set of centroids, can be used to quantize vectors. Quantization
aims to find an encoding of vectors that reduces the expected distortion.

All routines expect obs to be an M by N array, where the rows are the observation vectors. The codebook is a k by N
array, where the ith row is the centroid of code word i. The observation vectors and centroids have the same feature
dimension.

As an example, suppose we wish to compress a 24-bit color image (each pixel is represented by one byte for red, one for
blue, and one for green) before sending it over the web. By using a smaller 8-bit encoding, we can reduce the amount of
data by two thirds. Ideally, the colors for each of the 256 possible 8-bit encoding values should be chosen to minimize
distortion of the color. Running k-means with k=256 generates a code book of 256 codes, which fills up all possible 8-bit
sequences. Instead of sending a 3-byte value for each pixel, the 8-bit centroid index (or code word) of the dominating
centroid is transmitted. The code book is also sent over the wire so each 8-bit code can be translated back to a 24-bit
pixel value representation. If the image of interest was of an ocean, we would expect many 24-bit blues to be represented
by 8-bit codes. If it was an image of a human face, more flesh-tone colors would be represented in the code book.

306 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

3.3.3 Hierarchical clustering (scipy.cluster.hierarchy)

These functions cut hierarchical clusterings into flat clusterings or find the roots of the forest formed by a cut by providing
the flat cluster ids of each observation.

fcluster(Z, t], criterion, depth, R, monocrit]) Form flat clusters from the hierarchical clustering defined
by the given linkage matrix.

felusterdata(X, t[, criterion, metric, ...]) Cluster observation data using a given metric.

leaders(Z,T) Return the root nodes in a hierarchical clustering.

scipy.cluster.hierarchy.fcluster

scipy.cluster.hierarchy.fcluster (Z, ¢, criterion='inconsistent', depth=2, R=None, monocrit=None)
Form flat clusters from the hierarchical clustering defined by the given linkage matrix.

Parameters
Z [ndarray] The hierarchical clustering encoded with the matrix returned by the 1 inkage
function.
t [scalar]

For criteria ‘inconsistent’, ‘distance’ or ‘monocrit’,
this is the threshold to apply when forming flat clusters.
For ‘maxclust’ or ‘maxclust_monocrit’ criteria,
this would be max number of clusters requested.
criterion [str, optional] The criterion to use in forming flat clusters. This can be any of the following
values:
inconsistent:
If a cluster node and all its descendants have an inconsistent value less than or
equal to ¢, then all its leaf descendants belong to the same flat cluster. When
no non-singleton cluster meets this criterion, every node is assigned to its own
cluster. (Default)
distance:
Forms flat clusters so that the original observations in each flat cluster have
no greater a cophenetic distance than 7.
maxclust :
Finds a minimum threshold r so that the cophenetic distance between any
two original observations in the same flat cluster is no more than r and no
more than ¢ flat clusters are formed.
monocrit :
Forms a flat cluster from a cluster node ¢ with index i when monocrit [j]
<= t.
For example, to threshold on the maximum mean distance as computed in
the inconsistency matrix R with a threshold of 0.8 do:

MR = maxRstat (Zz, R, 3)
fcluster(Z, t=0.8, criterion='monocrit', .
—monocrit=MR)

maxclust_monocrit :
Forms a flat cluster from a non-singleton cluster node ¢ when mon-
ocrit[i] <= «z for all cluster indices i below and including c. r is
minimized such that no more than t flat clusters are formed. monocrit must
be monotonic. For example, to minimize the threshold t on maximum incon-
sistency values so that no more than 3 flat clusters are formed, do:

3.3. API definition 307

SciPy Reference Guide, Release 1.8.0

depth
R

monocrit

Returns

fcluster

See also:

linkage

MI

fcluster(z,

maxinconsts (Z,
t=3,

—monocrit=MI)

R)

criterion="'maxclust_monocrit', .

[int, optional] The maximum depth to perform the inconsistency calculation. It has no mean-
ing for the other criteria. Default is 2.
[ndarray, optional] The inconsistency matrix to use for the ‘inconsistent’ criterion. This ma-
trix is computed if not provided.
[ndarray, optional] An array of length n-1. monocrit[i] is the statistics upon which non-
singleton i is thresholded. The monocrit vector must be monotonic, i.e., given a node ¢

with index i, for all node indices j corresponding to nodes below ¢, monocrit [1]

monocrit[j].

>=

[ndarray] An array of length n. T [1] is the flat cluster number to which original observation

i belongs.

for information about hierarchical clustering methods work.

Examples

>>> from scipy.cluster.hierarchy import ward,

fcluster

>>> from scipy.spatial.distance import pdist

All cluster linkage methods - e.g., scipy.cluster.hierarchy.ward generate a linkage matrix Z as their

output:
>>> X = [[0, O], [0, 1] [1, 01,
o, 41, 10, 31, [1, 4],
(4, 01, (3, 01, [4, 11,
(4, 41, [3, 41, [4, 311
>>> 7 = ward(pdist (X))
>>> 7
array ([[O. , 1. 1. , 2. 1,
[3. , 4. 1. , 2. 1,
[6. , 1. 1. , 2. 1,
[9. , 10. 1. , 2. 1,
[2. , 12, 1.29099445, 3. 1,
[5. , 13. 1.29099445, 3. 1,
[8. , 14. 1.29099445, 3. 1,
[11. , 15. 1.29099445, 3. 1,
[16. , 17, 5.77350269, 6. 1,
[18. , 19. 5.77350269, 6. 1,
[20. , 21. 8.16496581, 12. 11)

This matrix represents a dendrogram, where the first and second elements are the two clusters merged at each step,
the third element is the distance between these clusters, and the fourth element is the size of the new cluster - the
number of original data points included.

308

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.cluster.hierarchy. fcluster can be used to flatten the dendrogram, obtaining as a result an
assignation of the original data points to single clusters.

This assignation mostly depends on a distance threshold t - the maximum inter-cluster distance allowed:

>>> fcluster (z, t=0
3

.9, criterion='distance')
array ([1, 2, , 4

, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)

>>> fcluster(Zz, t=1.1, criterion='distance')
array (1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8], dtype=int32)

>>> fcluster (Z, t=3, criterion='distance')
array ([, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

>>> fcluster(Zz, t=9, criterion='distance')
array (1, 212, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

In the first case, the threshold t is too small to allow any two samples in the data to form a cluster, so 12 different
clusters are returned.

In the second case, the threshold is large enough to allow the first 4 points to be merged with their nearest neighbors.
So, here, only 8 clusters are returned.

The third case, with a much higher threshold, allows for up to 8 data points to be connected - so 4 clusters are
returned here.

Lastly, the threshold of the fourth case is large enough to allow for all data points to be merged together - so a single
cluster is returned.

scipy.cluster.hierarchy.fclusterdata

scipy.cluster.hierarchy. fclusterdata (X, ¢, criterion='"inconsistent’, metric="euclidean’, depth=2,
method="single’, R=None)
Cluster observation data using a given metric.

Clusters the original observations in the n-by-m data matrix X (n observations in m dimensions), using the euclidean
distance metric to calculate distances between original observations, performs hierarchical clustering using the
single linkage algorithm, and forms flat clusters using the inconsistency method with ¢ as the cut-off threshold.

A 1-D array T of length n is returned. T [i] is the index of the flat cluster to which the original observation i

belongs.
Parameters
X [(N, M) ndarray] N by M data matrix with N observations in M dimensions.
t [scalar]

For criteria ‘inconsistent’, ‘distance’ or ‘monocrit’,
this is the threshold to apply when forming flat clusters.
For ‘maxclust’ or ‘maxclust_monocrit’ criteria,
this would be max number of clusters requested.
criterion [str, optional] Specifies the criterion for forming flat clusters. Valid values are ‘inconsistent’
(default), ‘distance’, or ‘maxclust’ cluster formation algorithms. See fc1uster for descrip-

tions.

metric [str or function, optional] The distance metric for calculating pairwise distances. See
distance.pdist for descriptions and linkage to verify compatibility with the linkage
method.

3.3. API definition 309

SciPy Reference Guide, Release 1.8.0

depth [int, optional] The maximum depth for the inconsistency calculation. See inconsistent
for more information.

method [str, optional] The linkage method to use (single, complete, average, weighted, median cen-
troid, ward). See 1inkage for more information. Default is “single”.

R [ndarray, optional] The inconsistency matrix. It will be computed if necessary if it is not
passed.
Returns
fclusterdata
[ndarray] A vector of length n. T[i] is the flat cluster number to which original observation i
belongs.
See also:

scipy.spatial.distance.pdist

pairwise distance metrics

Notes

This function is similar to the MATLAB function clusterdata.

Examples

>>> from scipy.cluster.hierarchy import fclusterdata

This is a convenience method that abstracts all the steps to perform in a typical SciPy’s hierarchical clustering
workflow.

¢ Transform the input data into a condensed matrix with scipy.spatial.distance.pdist.
* Apply a clustering method.

e Obtain flat clusters at a user defined distance threshold t using scipy.cluster.hierarchy.
fcluster.

>>> X = [[O0,

~
~
~

4

~

[0
(o,
[4
[4

IS NG RN
N

s O B O
~

> O W -

[
~

— —

~ 0~

w = s O

[

NN

~

[T "
~
— — — —

4

>>> fclusterdata (X, t=1)
array ([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32)

The output here (for the dataset X, distance threshold t, and the default settings) is four clusters with three data
points each.

310 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.cluster.hierarchy.leaders
scipy.cluster.hierarchy.leaders (Z, T)
Return the root nodes in a hierarchical clustering.

Returns the root nodes in a hierarchical clustering corresponding to a cut defined by a flat cluster assignment vector
T. See the fcluster function for more information on the format of T.

For each flat cluster j of the k flat clusters represented in the n-sized flat cluster assignment vector T, this function
finds the lowest cluster node ¢ in the linkage tree Z, such that:

¢ leaf descendants belong only to flat cluster j (i.e., T [p]==7 for all p in S(7), where S(7) is the set of leaf ids
of descendant leaf nodes with cluster node 7)

* there does not exist a leaf that is not a descendant with ¢ that also belongs to cluster j (i.e., T [q] ! =7 for all
g not in S(7)). If this condition is violated, T is not a valid cluster assignment vector, and an exception will

be thrown.
Parameters
Z [ndarray] The hierarchical clustering encoded as a matrix. See Iinkage for more infor-
mation.
T [ndarray] The flat cluster assignment vector.
Returns
L [ndarray] The leader linkage node id’s stored as a k-element 1-D array, where k is the number
of flat clusters found in T.
L[j]=1 is the linkage cluster node id that is the leader of flat cluster with id M[j]. If i
< n, i corresponds to an original observation, otherwise it corresponds to a non-singleton
cluster.
M [ndarray] The leader linkage node id’s stored as a k-element 1-D array, where k is the number
of flat clusters found in T. This allows the set of flat cluster ids to be any arbitrary set of k
integers.
For example: if L [3]=2 and M[3]=8, the flat cluster with id 8’s leader is linkage node 2.
See also:
fcluster

for the creation of flat cluster assignments.

Examples

>>> from scipy.cluster.hierarchy import ward, fcluster, leaders
>>> from scipy.spatial.distance import pdist

Given a linkage matrix Z - obtained after apply a clustering method to a dataset X - and a flat cluster assignment

array T:

>>> X = [[0, O], [O, 17, [Z1, O,
(o, 41, 10, 31, [1, 41,
(4, 01, (3, 01, T[4, 11,
(4, 41, [3, 41, [4, 3]1]

3.3. API definition 311

SciPy Reference Guide, Release 1.8.0

>>> 7 = ward(pdist (X))

>>> 7

array ([[O. , 1. , 1. , 2. 1,
[3. , 4. , 1. , 2. 1,
[6. , 1. , 1. , 2. 1,
[9. , 10. , 1. , 2. 1,
[2. , 12, , 1.29099445, 3. 1,
[5. , 13, , 1.29099445, 3. 1,
[8. , 14, , 1.29099445, 3. 1,
[11. , 15. , 1.29099445, 3. 1,
[16. , 17. , 5.77350269, 6. 1,
[18. , 19. , 5.77350269, 6. 1,
[20. , 21. , 8.16496581, 12. 11)

>>> T = fcluster(Z2, 3, criterion='distance')

>>> T

array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

scipy.cluster.hierarchy.leaders returns the indices of the nodes in the dendrogram that are the
leaders of each flat cluster:

>>> 1, M = leaders(Z, T)
>>> 1
array ([16, 17, 18, 19], dtype=int32)

(remember that indices 0-11 point to the 12 data points in X, whereas indices 12-22 point to the 11 rows of Z)

scipy.cluster.hierarchy.leaders also returns the indices of the flat clusters in T:

>>> M

array ([1, 2, 3, 4], dtype=int32)

These are routines for agglomerative clustering.

1inkage(y[, method, metric, optimal_ordering])

Perform hierarchical/agglomerative clustering.

single(y)

Perform single/min/nearest linkage on the condensed dis-
tance matrix y.

complete(y) Perform complete/max/farthest point linkage on a con-
densed distance matrix.

average(y) Perform average/UPGMA linkage on a condensed dis-
tance matrix.

weighted(y) Perform weighted/ WPGMA linkage on the condensed
distance matrix.

centroid(y) Perform centroid/UPGMC linkage.

median(y) Perform median/WPGMC linkage.

ward(y) Perform Ward's linkage on a condensed distance matrix.

312 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.cluster.hierarchy.linkage

scipy.cluster.hierarchy.linkage (y, method='single', metric='euclidean', optimal_ordering=False)
Perform hierarchical/agglomerative clustering.

The input y may be either a 1-D condensed distance matrix or a 2-D array of observation vectors.

If y is a 1-D condensed distance matrix, then y must be a (;‘) sized vector, where n is the number of original

observations paired in the distance matrix. The behavior of this function is very similar to the MATLAB linkage
function.

A (n — 1) by 4 matrix Z is returned. At the i-th iteration, clusters with indices z[i, 0] and Z[i, 1]
are combined to form cluster n + i. A cluster with an index less than n corresponds to one of the n original
observations. The distance between clusters z [1, 0] and Z[1, 1] isgivenby z[i, 2]. The fourth value
Z[1, 3] represents the number of original observations in the newly formed cluster.

The following linkage methods are used to compute the distance d(s, t) between two clusters s and ¢. The algorithm
begins with a forest of clusters that have yet to be used in the hierarchy being formed. When two clusters s and
t from this forest are combined into a single cluster u, s and ¢ are removed from the forest, and w is added to the
forest. When only one cluster remains in the forest, the algorithm stops, and this cluster becomes the root.

A distance matrix is maintained at each iteration. The d[i,] entry corresponds to the distance between cluster
7 and j in the original forest.

At each iteration, the algorithm must update the distance matrix to reflect the distance of the newly formed cluster
u with the remaining clusters in the forest.

Suppose there are |u| original observations u[0], . . ., u[|u| — 1] in cluster u and |v| original objects v[0], . .., v[|v| —
1] in cluster v. Recall, s and ¢ are combined to form cluster u. Let v be any remaining cluster in the forest that is
not u.

The following are methods for calculating the distance between the newly formed cluster u and each v.

¢ method="single’ assigns
d(u,v) = min(dist(ufi], v[;]))

for all points ¢ in cluster « and 7 in cluster v. This is also known as the Nearest Point Algorithm.

* method="complete’ assigns
d(u,v) = max(dist(uli],v[j]))

for all points ¢ in cluster u and j in cluster v. This is also known by the Farthest Point Algorithm or Voor
Hees Algorithm.

¢ method="average’ assigns
d(uli], v[j])
d = —_—
) = 2 T ol

for all points ¢ and j where |u| and |v| are the cardinalities of clusters v and v, respectively. This is also called
the UPGMA algorithm.

¢ method="weighted’ assigns
d(u,v) = (dist(s,v) + dist(t,v))/2

where cluster u was formed with cluster s and t and v is a remaining cluster in the forest (also called WPGMA).

3.3. API definition 313

SciPy Reference Guide, Release 1.8.0

* method="centroid’ assigns

dist(s,t) = ||cs — ctl]2

where cs and ¢, are the centroids of clusters s and ¢, respectively. When two clusters s and ¢ are combined
into a new cluster u, the new centroid is computed over all the original objects in clusters s and ¢. The distance
then becomes the Euclidean distance between the centroid of « and the centroid of a remaining cluster v in
the forest. This is also known as the UPGMC algorithm.

method="median’ assigns d(s, t) like the cent roid method. When two clusters s and ¢ are combined into
a new cluster u, the average of centroids s and t give the new centroid u. This is also known as the WPGMC
algorithm.

method="ward’ uses the Ward variance minimization algorithm. The new entry d(u, v) is computed as follows,

t
d(u,v) = \/|” w2 1 P g gy - s a2

where w is the newly joined cluster consisting of clusters s and ¢, v is an unused cluster in the forest, T' =
|v| + |s] + |t|, and | * | is the cardinality of its argument. This is also known as the incremental algorithm.

Warning: When the minimum distance pair in the forest is chosen, there may be two or more pairs with the same
minimum distance. This implementation may choose a different minimum than the MATLAB version.

Parameters

y [ndarray] A condensed distance matrix. A condensed distance matrix is a flat array con-
taining the upper triangular of the distance matrix. This is the form that pdist returns.
Alternatively, a collection of m observation vectors in 7 dimensions may be passed as an m
by n array. All elements of the condensed distance matrix must be finite, i.e., no NaNs or
infs.

method [str, optional] The linkage algorithm to use. See the Linkage Methods section below
for full descriptions.

metric [str or function, optional] The distance metric to use in the case that y is a collection of
observation vectors; ignored otherwise. See the pdist function for a list of valid distance
metrics. A custom distance function can also be used.

optimal_ordering
[bool, optional] If True, the linkage matrix will be reordered so that the distance between
successive leaves is minimal. This results in a more intuitive tree structure when the data
are visualized. defaults to False, because this algorithm can be slow, particularly on large
datasets [2]. See also the optimal_ leaf ordering function.

New in version 1.0.0.

Returns

Z [ndarray] The hierarchical clustering encoded as a linkage matrix.

See also:

scipy.spatial.distance.pdist

pairwise distance metrics

314

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Notes

1. For method ‘single’, an optimized algorithm based on minimum spanning tree is implemented. It has time
complexity O(n?). For methods ‘complete’, ‘average’, ‘weighted’ and ‘ward’, an algorithm called nearest-
neighbors chain is implemented. It also has time complexity O(n?). For other methods, a naive algorithm is
implemented with O(n?) time complexity. All algorithms use O(n?) memory. Refer to [1] for details about

the algorithms.

2. Methods ‘centroid’, ‘median’, and ‘ward’ are correctly defined only if Euclidean pairwise metric is used. If y
is passed as precomputed pairwise distances, then it is the user’s responsibility to assure that these distances
are in fact Euclidean, otherwise the produced result will be incorrect.

References

[11, [2]

Examples

>>> from scipy.cluster.hierarchy import dendrogram, linkage
>>> from matplotlib import pyplot as plt

>> X = [[i] for i in [2, 8, O, 4, 1, 9, 9, 01]
>>> 7 = linkage (X, 'ward')

>>> fig = plt.figure(figsize=(25, 10))

>>> dn = dendrogram(Z)

>>> 7 = linkage (X, 'single')

>>> fig = plt.figure(figsize=(25, 10))

>>> dn = dendrogram(Z)

>>> plt.show()

3.3. API definition

315

SciPy Reference Guide, Release 1.8.0

scipy.cluster.hierarchy.single

scipy.cluster.hierarchy.single (y)
Perform single/min/nearest linkage on the condensed distance matrix y.

Parameters
y [ndarray] The upper triangular of the distance matrix. The result of pdist is returned in
this form.
Returns
Z [ndarray] The linkage matrix.
See also:
linkage

for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist

pairwise distance metrics

Examples

>>> from scipy.cluster.hierarchy import single, fcluster
>>> from scipy.spatial.distance import pdist

First, we need a toy dataset to play with:

X X X X
X X
X X
X X X X

316 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

~

~

~

~

~

~

S O O
~

~

— — —
S O B O
~
S O W -
[
~
— — =
I

~ ~

w = s O

[
~

o~

~

AU T
~
— — —

Then, we get a condensed distance matrix from this dataset:

>>> y = pdist (X)

Finally, we can perform the clustering:

>>> 7 = single (y)

>>> 7

array ([[O., 1., 1., 2.1,
[2., 12., 1., 3.1,
[3., 4., 1., 2.1,
[5., 14., 1., 3.1,
[6., 7., 1., 2.1,
[8., 16., 1., 3.1,
[9., 10., 1., 2.1,
(12., 18., 1., 3.1,
[13., 15., 2., 6.1,
(17., 20., 2., 9.1,
[19., 21., 2., 12.]11)

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed
explanation of its contents.

Wecanuse scipy.cluster.hierarchy. fcluster tosee to which cluster each initial point would belong
given a distance threshold:

>>> fcluster (Z,
array ([7, 8,
>>> fcluster (Z,
array ([3, 3, 3,
>>> fcluster (2,
array ([1, 1, 1,

~

~ ~

=N D o O
~

~

.9, criterion='distance')

10, 11, 12, 4, 5, 6, 1, 2,
criterion='distance')
4, 4, 2, 2, 2, 1, 1,
criterion="'distance')
i, 1, 1, 1, 1, 1, 1, 11,

3], dtype=int32)

1], dtype=int32)

dtype=int32)

Also, scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram.

scipy.cluster.hierarchy.complete

scipy.cluster.hierarchy.complete (y)
Perform complete/max/farthest point linkage on a condensed distance matrix.

Parameters
y [ndarray] The upper triangular of the distance matrix. The result of pdist is returned in
this form.
Returns
Z [ndarray] A linkage matrix containing the hierarchical clustering. See the 1inkage func-
tion documentation for more information on its structure.
See also:

3.3. API definition

SciPy Reference Guide, Release 1.8.0

linkage
for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist

pairwise distance metrics

Examples

>>> from scipy.cluster.hierarchy import complete, fcluster

>>> from scipy.spatial.distance import pdist

First, we need a toy dataset to play with:

X X X X

X X

X X

X X X X

>>> X = ([0, O, [0, 1], [1, O],
to, 41, [0, 31, [1, 4],
(4, 01, [3, 0], [4, 11,
(4, 41, [3, 41, [4, 3]]

Then, we get a condensed distance matrix from this dataset:

>>> y = pdist (X)

Finally, we can perform the clustering:

>>> 7Z = complete(y)

>>> 7

array ([[O. , 1. 1. , 2. 1,
[3. , 4. 1. , 2. 1,
[6. , 1. 1. , 2. 1,
[9. , 10. 1. , 2. 1,
[2. , 12, 1.41421356, 3. 1,
[5. , 13. 1.41421356, 3. 1,
[8. , 14. 1.41421356, 3. 1,
[11. , 15. 1.41421356, 3. 1,
[16. , 17, 4.12310563, 6. 1,
[18. , 19. 4.12310563, 6. 1,
[20. , 21. 5.65685425, 12. 11)

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed
explanation of its contents.

Wecanuse scipy.cluster.hierarchy. fcluster tosee to which cluster each initial point would belong
given a distance threshold:

>>> fcluster(Z, 0.9, criterion='distance')
array ([1, 2, 3, 4, 5, 6, 7, 8, 9,
>>> fcluster(z, 1.5, criterion='distance')

10, 11, 12], dtype=int32)

(continues on next page)

318

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

array ([1, 1,
array ([1, 1,

array ([1, 1,

>>> fcluster (2,

>>> fcluster (2,

1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
4.5, criterion='distance')

1, 1, 1,1, 2, 2, 2, 2, 2, 2], dtype=int32)
6, criterion='distance')

1t 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Also, scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram.

scipy.cluster.hierarchy.average

scipy.cluster.hierarchy.average (y)
Perform average/UPGMA linkage on a condensed distance matrix.

Parameters

y

Returns

V/

See also:

linkage

[ndarray] The upper triangular of the distance matrix. The result of pdist is returned in
this form.

[ndarray] A linkage matrix containing the hierarchical clustering. See 1inkage for more
information on its structure.

for advanced creation of hierarchical clusterings.

scipy.spatial.distance.pdist

pairwise distance metrics

Examples

>>> from scipy.cluster.hierarchy import average, fcluster
>>> from scipy.spatial.distance import pdist

First, we need a toy dataset to play with:

X X X X

X X

X X

X X X X

>>> X = [[0, O], [0, 171, [%1, OI,
(o, 41, [0, 31, [1, 4],
(4, 01, 3, 01, [4, 1],
(4, 41, [3, 41, [4, 3]1]

Then, we get a condensed distance matrix from this dataset:

>>> y = pdist (X)

3.3. API definition

319

SciPy Reference Guide, Release 1.8.0

Finally, we can perform the clustering:

>>> 7 = average (y)

>>> 7

array ([[O. , 1. 1. , 2. 1,
[3. , 4. 1. , 2. 1,
[6. , 1. 1. , 2. 1,
[9. , 10. 1. , 2. 1,
[2. , 12. 1.20710678, 3. 1,
[5. , 13. 1.20710678, 3. 1,
[8. , 14. 1.20710678, 3. 1,
[11. , 15. 1.20710678, 3. 1,
[16. , 17. 3.39675184, 6. 1,
[18. , 19. 3.39675184, 6. 1,
[20. , 21. , 4.09206523, 12. 11)

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed
explanation of its contents.

Wecanuse scipy.cluster.hierarchy. fcluster tosee to which cluster each initial point would belong
given a distance threshold:

>>> fcluster(z, 0.9, criterion='distance')

array ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 121, dtype=int32)
>>> fcluster(Z, 1.5, criterion='distance')

array (1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

>>> fcluster(Zz, 4, criterion='distance')

array((2, 2, 12, 1, 1, 1, 2, 2, 2, 2, 2, 2], dtype=int32)

>>> fcluster(Z, 6, criterion='distance')

array (1, 1, 212, 2, 1, 1, 1, 1, 1, 1, 1, 11, dtype=int32)

Also, scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram.

scipy.cluster.hierarchy.weighted

scipy.cluster.hierarchy.weighted (y)
Perform weighted/ WPGMA linkage on the condensed distance matrix.

See 1inkage for more information on the return structure and algorithm.

Parameters
y [ndarray] The upper triangular of the distance matrix. The result of pdist is returned in
this form.
Returns
y/ [ndarray] A linkage matrix containing the hierarchical clustering. See 1inkage for more
information on its structure.
See also:
linkage

for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist

pairwise distance metrics

320 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Examples
>>> from scipy.cluster.hierarchy import weighted, fcluster
>>> from scipy.spatial.distance import pdist
First, we need a toy dataset to play with:
X X X X
b4 be
X X
X X X X
>>> X = [[0, O], [0, 11, [%1, O],
to, 41, [0, 31, [1, 4],
(4, 01, [3, 0], [4, 11,
(4, 41, [3, 41, [4, 31]

Then, we get a condensed distance matrix from this dataset:

>>> 'y

pdist (X

)

Finally, we can perform the clustering:

>>> 7 = weighted(y)

>>> 7

array ([[O. , 1. , 1. , 2. 1,
[6. , 1. , 1. , 2. 1,
[3. , 4. , 1. , 2. 1,
[9. , 11, , 1. , 2. 1,
[2. , 12, , 1.20710678, 3. 1,
[8. , 13. , 1.20710678, 3. 1,
[5. , 14. , 1.20710678, 3. 1,
[10. , 15. , 1.20710678, 3. 1,
[18. , 19. , 3.05595762, 6. 1,
[16. , 17, , 3.32379407, 6. 1,
[20. , 21. , 4.06357713, 12. 11)

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed
explanation of its contents.

Wecanuse scipy.cluster.hierarchy. fcluster tosee to which cluster each initial point would belong
given a distance threshold:

>>> fcluster(Z, 0.9, criterion='distance')

arrvay ([7, 8, 9, 1, 2, 3, 10, 11, 12, 4, 6, 5], dtype=int32)
>>> fcluster(z, 1.5, criterion='distance')

array ([3, 3, 3, 1, 1, 1, 4, 4, 4, 2, 2, 2], dtype=int32)

>>> fcluster(Zz, 4, criterion='distance')

array([2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1], dtype=int32)

>>> fcluster (Z, 6, criterion='distance')

array (1, 1, 212, 2, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Also, scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram

3.3. API definition

SciPy Reference Guide, Release 1.8.0

scipy.cluster.hierarchy.centroid
scipy.cluster.hierarchy.centroid (y)
Perform centroid/UPGMC linkage.
See 1inkage for more information on the input matrix, return structure, and algorithm.
The following are common calling conventions:
1. Z = centroid(y)
Performs centroid/UPGMC linkage on the condensed distance matrix y.
2. Z = centroid(X)

Performs centroid/UPGMC linkage on the observation matrix X using Euclidean distance as the distance

metric.
Parameters
y [ndarray] A condensed distance matrix. A condensed distance matrix is a flat array con-
taining the upper triangular of the distance matrix. This is the form that pdist returns.
Alternatively, a collection of m observation vectors in n dimensions may be passed as an m
by n array.
Returns
V4 [ndarray] A linkage matrix containing the hierarchical clustering. See the 1inkage func-
tion documentation for more information on its structure.
See also:
linkage

for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist

pairwise distance metrics

Examples
>>> from scipy.cluster.hierarchy import centroid, fcluster
>>> from scipy.spatial.distance import pdist
First, we need a toy dataset to play with:
X X X X
X X
x x
X X X X
>>> X = ([0, O], [O, 171, [Z1, OI,
(o, 41, [0, 31, [1, 4],
(4, 01, 3, 01, [4, 11,
(4, 41, [3, 41, [4, 3]1]

Then, we get a condensed distance matrix from this dataset:

322 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

>>> y = pdist (X)

Finally, we can perform the clustering:

>>> 7 = centroid(y)

>>> 7

array ([[O. , 1. , 1. , 2. 1,
[3. , 4. , 1. , 2. 1,
[9. , 10. , 1. , 2. 1,
[6. , 1. , 1. , 2. 1,
[2. , 12, , 1.11803399, 3. 1,
[5. , 13, , 1.11803399, 3. 1,
[8. , 15. , 1.11803399, 3. 1,
[11. , 14. , 1.11803399, 3. 1,
[18. , 19. , 3.33333333, o6. 1,
[16. , 17. , 3.33333333, o6. 1,
[20. , 21. , 3.33333333, 12. 11)

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed
explanation of its contents.

Wecanuse scipy.cluster.hierarchy. fcluster tosee to which cluster each initial point would belong
given a distance threshold:

>>> fcluster(z, 0.9, criterion='distance')

array([7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, dtype=int32)
>>> fcluster(Zz, 1.1, criterion='distance')

array([5, 5, 6, 7, 7, 8, 1, 1, 2, 3, 3, 4], dtype=int32)

>>> fcluster (Z, 2, criterion='distance')

array([3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2], dtype=int32)

>>> fcluster(Zz, 4, criterion='distance')

array (2, 1, 1, 2, 1, 1, 21, 1, 1, 1, 1, 1], dtype=int32)

Also, scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram.

scipy.cluster.hierarchy.median

scipy.cluster.hierarchy.median (y)

Perform median/WPGMC linkage.
See 1inkage for more information on the return structure and algorithm.

The following are common calling conventions:
1. Z = median (y)
Performs median/WPGMC linkage on the condensed distance matrix y. See 1inkage for more infor-
mation on the return structure and algorithm.
2. Z = median (X)
Performs median/WPGMC linkage on the observation matrix X using Euclidean distance as the distance
metric. See 11inkage for more information on the return structure and algorithm.

Parameters

y [ndarray] A condensed distance matrix. A condensed distance matrix is a flat array con-
taining the upper triangular of the distance matrix. This is the form that pdist returns.

3.3. API definition

323

SciPy Reference Guide, Release 1.8.0

Alternatively, a collection of m observation vectors in n dimensions may be passed as an m

by n array.
Returns
Z [ndarray] The hierarchical clustering encoded as a linkage matrix.
See also:
linkage

for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist

pairwise distance metrics

Examples
>>> from scipy.cluster.hierarchy import median, fcluster
>>> from scipy.spatial.distance import pdist
First, we need a toy dataset to play with:
X X X X
X X
X X
X X X X
>>> X = [[0, O], [O, 17, [Z1, O,
to, 41, [0, 31, [1, 41,
(4, 01, (3, 01, T[4, 11,
(4, 41, [3, 41, [4, 311
Then, we get a condensed distance matrix from this dataset:
>>> y = pdist (X)
Finally, we can perform the clustering:
>>> 7 = median (y)
>>> 7
array ([[O. , 1. , 1. , 2. 1,
[3. P 4. ’ 1. ’ 2. 1y
[9. , 10. ;1. ;2. I
[6. , 1. ;1. ;2. 1,
[2. , 12, , 1.11803399, 3. 1,
[5. , 13. , 1.11803399, 3. 1,
[8. , 15. , 1.11803399, 3. 1,
[11. , 14, , 1.11803399, 3. 1,
[18. , 19. ;3. , 6. 1,
[16. , 17. , 3.5 , 6. 1,
[20. , 21. , 3.25 , 12, 11)

324

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed
explanation of its contents.

Wecanuse scipy.cluster.hierarchy. fcluster tosee to which cluster each initial point would belong
given a distance threshold:

.9, criterion='distance')

>>> fcluster (2, ,
, 10, 11, 12, 1, 2, 3, 4, 5, 6], dtype=int32)

0
array ([7, 8, 9
>>> fcluster(Zz, 1.1, criterion='distance')
array([5, 5, 6, 7, 7, 8, 1, 1, 2, 3, 3, 4], dtype=int32)
>>> fcluster (Z, 2, criterion='distance')
array ([3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2], dtype=int32)
>>> fcluster (Z, 4, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Also, scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram.

scipy.cluster.hierarchy.ward
scipy.cluster.hierarchy.ward(y)
Perform Ward’s linkage on a condensed distance matrix.
See 1inkage for more information on the return structure and algorithm.
The following are common calling conventions:
1. z = ward (y) Performs Ward’s linkage on the condensed distance matrix y.

2. 7Z = ward (X) Performs Ward’s linkage on the observation matrix X using Euclidean distance as the distance

metric.
Parameters
y [ndarray] A condensed distance matrix. A condensed distance matrix is a flat array con-
taining the upper triangular of the distance matrix. This is the form that pdist returns.
Alternatively, a collection of m observation vectors in n dimensions may be passed as an m
by n array.
Returns
y/ [ndarray] The hierarchical clustering encoded as a linkage matrix. See 1inkage for more
information on the return structure and algorithm.
See also:
linkage

for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist

pairwise distance metrics

3.3. API definition 325

SciPy Reference Guide, Release 1.8.0

Examples
>>> from scipy.cluster.hierarchy import ward, fcluster
>>> from scipy.spatial.distance import pdist
First, we need a toy dataset to play with:
X X X X
x X
X X
X X X X
>>> X = [[0, O], [O, 17, [Z1, O,
[0, 41, [0, 31, [1, 41,
(4, 01, (3, 01, T[4, 11,
(4, 41, [3, 41, [4, 3]1]
Then, we get a condensed distance matrix from this dataset:
>>> y = pdist (X)
Finally, we can perform the clustering:
>>> 7Z = ward(y)
>>> 7
array ([[O. , 1. , 1. , 2. 1,
[3. , 4. , 1. , 2. 1,
[6. ;1. , 1. , 2. 1,
[9. , 10. , 1. ;2. I
[2. , 12, , 1.29099445, 3. 1,
[5. , 13. , 1.29099445, 3. 1,
[8. , 14, , 1.29099445, 3. 1,
[11. , 15. , 1.29099445, 3. 1,
[16. , 17, , 5.77350269, 6. 1,
[18. , 19. , 5.77350269, 6. 1,
[20. , 21. , 8.16496581, 12. mn

The linkage matrix Z represents a dendrogram - see scipy.cluster.hierarchy.linkage for a detailed
explanation of its contents.

Wecanuse scipy.cluster.hierarchy. fcluster tosee to which cluster each initial point would belong
given a distance threshold:

>>> fcluster(Z, 0.9, criterion='distance')

array ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)
>>> fcluster(Zz, 1.1, criterion='distance')

array ([, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8], dtype=int32)

>>> fcluster(Zz, 3, criterion='distance')

array([(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

>>> fcluster (Z, 9, criterion='distance')

array (1, 1, 212, 2, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Also, scipy.cluster.hierarchy.dendrogram can be used to generate a plot of the dendrogram

326 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

These routines compute statistics on hierarchies.

cophenet(Z[, Y]) Calculate the cophenetic distances between each observa-
tion in the hierarchical clustering defined by the linkage
Z.

from _mlab_linkage(Z) Convert a linkage matrix generated by MATLAB(TM) to
a new linkage matrix compatible with this module.

inconsistent(Z[,d]) Calculate inconsistency statistics on a linkage matrix.

maxinconsts(Z,R) Return the maximum inconsistency coefficient for each
non-singleton cluster and its children.

maxdists(Z) Return the maximum distance between any non-singleton
cluster.

maxRstat(Z,R,1) Return the maximum statistic for each non-singleton clus-
ter and its children.

to_mlab_linkage(Z) Convert a linkage matrix to a MATLAB(TM) compatible
one.

scipy.cluster.hierarchy.cophenet

scipy.cluster.hierarchy.cophenet (Z, Y=None)
Calculate the cophenetic distances between each observation in the hierarchical clustering defined by the linkage

Z.

Suppose p and g are original observations in disjoint clusters s and t, respectively and s and t are joined by
a direct parent cluster u. The cophenetic distance between observations i1 and j is simply the distance between
clusters s and t.

Parameters

Z [ndarray] The hierarchical clustering encoded as an array (see 1 inkage function).

Y [ndarray (optional)] Calculates the cophenetic correlation coefficient c of a hierarchical clus-
tering defined by the linkage matrix Z of a set of n observations in m dimensions. Y is the
condensed distance matrix from which Z was generated.

Returns

c [ndarray] The cophentic correlation distance (if Y is passed).

d [ndarray] The cophenetic distance matrix in condensed form. The ¢j th entry is the cophe-
netic distance between original observations ¢ and j.

See also:
linkage

for a description of what a linkage matrix is.
scipy.spatial.distance.squareform

transforming condensed matrices into square ones.

3.3. API definition 327

SciPy Reference Guide, Release 1.8.0

Examples
>>> from scipy.cluster.hierarchy import single, cophenet
>>> from scipy.spatial.distance import pdist, squareform

Given a dataset X and a linkage matrix Z, the cophenetic distance between two points of X is the distance between
the largest two distinct clusters that each of the points:

>>> X = [[0, O], [0, 1], [1, O7,
(0, 41, [0, 31, [1, 41,
4, 01, 3, 01, T[4, 11,
4, 41, 13, 41, T[4, 311
X corresponds to this dataset
X X X X
X X
X X
X X X X
>>> 7 = single (pdist (X))
>>> 7
array ([[O., 1., 1., 2.1,
[2., 12., 1., 3.1,
[3., 4., 1., 2.1,
[5., 14., 1., 3.1,
[6., 7., 1., 2.1,
[8., 16., 1., 3.1,
[9., 10., 1., 2.1,
(1., 18., 1., 3.1,
[13., 15., 2., 6.1,
(17., 20., 2., 9.1,
[19., 21., 2., 12.11)
>>> cophenet (Z)
array([1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 2., 2., 2., 2., 2.,
2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 1., 2., 2.,
2., 2., 2., 2., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
1., 1., 2., 2., 2., 1., 2., 2., 2., 2., 2., 2., 1., 1., 1.1)

The output of the scipy.cluster.hierarchy.cophenet method is represented in condensed form. We
canuse scipy.spatial.distance.squareformto see the output as a regular matrix (where each ele-

ment i 7j denotes the cophenetic distance between each i, j pair of points in X):

>>> squareform (cophenet (
array ([[0., 1., 1., 2.,

DD NDDND RO
~
DN O
~

~
NN PR PO NN
~

Z
2
2
2
1.
0
1
2
2

))

~ 0~ 0~

~

~

~

~
DN O PPN
. N PN
o DD DDDNDDNDDN
~

O = N MNDMNDDNDDNDDND

. e . : . e .

RN
~

DD DNDDNDDND
~

DD DD DNDDNDDND
e e e : . e .
DD DD DNDDNDDN

[U VI VT)
~

~

(continues on next page)

328

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

(2., 2., 2., 2., 2., 2., 1., 1., 0., 2., 2., 2.1,
(2., 2., 2., 2., 2., 2., 2., 2., 2., 0., 1., 1.1,
(2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 0., 1.1,
(2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 1., 0.11)

In this example, the cophenetic distance between points on X that are very close (i.e., in the same corner) is 1.
For other pairs of points is 2, because the points will be located in clusters at different corners - thus, the distance
between these clusters will be larger.

scipy.cluster.hierarchy.from_mlab_linkage
scipy.cluster.hierarchy.from_mlab_linkage (Z)
Convert a linkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this module.
The conversion does two things:
¢ the indices are converted from 1. .Nto 0. . (N-1) form, and

e a fourth column Z [:, 3] is added where Z [1i, 3] represents the number of original observations (leaves)
in the non-singleton cluster 1.

This function is useful when loading in linkages from legacy data files generated by MATLAB.

Parameters
Z [ndarray] A linkage matrix generated by MATLAB(TM).
Returns
YA [ndarray] A linkage matrix compatible with scipy.cluster.hierarchy.
See also:
linkage

for a description of what a linkage matrix is.
to_mlab_linkage
transform from SciPy to MATLAB format.

Examples

>>> import numpy as np
>>> from scipy.cluster.hierarchy import ward, from_mlab_linkage

Given a linkage matrix in MATLAB format mZ, we can use scipy.cluster.hierarchy.
from_mlab_1linkage toimport it into SciPy format:

>>> mZ = np.array([[1, 2, 11, [4, 5, 11, [7, 8, 11,
[10, 11, 11, [3, 13, 1.29099445],
[6, 14, 1.290994457,
[9, 15, 1.290994457],
[12, 16, 1.29099445],
[17, 18, 5.77350269]
[19, 20, 5.77350269]
[1

21, 22, 8.1649658

14

D)

3.3. API definition 329

SciPy Reference Guide, Release 1.8.0

>>> 7 = from_mlab_linkage (mZ)

>>> 7

array ([[O. ’ 1.
[3. , 4.
[6. , 7.
[9. , 10.
[2. , 12,
[5. , 13,
[8. , 14,
[11. , 15.
[16. , 17,
[18. , 19.
[20. , 21.

.29099445,
.29099445,
.29099445,
.29099445,
.77350269,
.77350269,
.16496581,

U U =R

4

4

4

l4

=

N ooy WwwwdhDhdDNDN

~ N 0~ 0~

~

~ 0~ 0~

~

o~
~

As expected, the linkage matrix Z returned includes an additional column counting the number of original samples
in each cluster. Also, all cluster indices are reduced by 1 (MATLAB format uses 1-indexing, whereas SciPy uses

0-indexing).

scipy.cluster.hierarchy.inconsistent

scipy.cluster.hierarchy.inconsistent (Z, d=2)
Calculate inconsistency statistics on a linkage matrix.

Parameters

V/

d

Returns

Notes

This function behaves similarly to the MATLAB(TM) inconsistent function.

[ndarray] The (n— 1) by 4 matrix encoding the linkage (hierarchical clustering). See 1ink—
age documentation for more information on its form.
[int, optional] The number of links up to d levels below each non-singleton cluster.

[ndarray] A (n — 1) by 4 matrix where the i’th row contains the link statistics for the non-
singleton cluster i. The link statistics are computed over the link heights for links d levels
below the cluster 1. R[i, 0] and R[i, 1] are the mean and standard deviation of the
link heights, respectively; R[i, 2] is the number of links included in the calculation; and
R[1, 3] is the inconsistency coefficient,

[i,2] —R[i,0]

R[i, 1]

330

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Examples
>>> from scipy.cluster.hierarchy import inconsistent, linkage
>>> from matplotlib import pyplot as plt
>>> X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]]
>>> 7 = linkage (X, 'ward')
>>> print (Z)
[[5. 6. 0. 2.]
[2. 7. 0. 2.]
[0. 4. 1. 2.]
[1. 8. 1.15470054 3.]
[9. 10. 2.12132034 4.]
[3. 12. 4.11096096 5.]
[11. 13. 14.07183949 8. 11
>>> inconsistent (Z)
array ([[O. , 0. , 1. , 0 1,
[0. , O. ;1. , 0 1,
[1. , 0. , 1. , 0. 1,
[0.57735027, 0.81649658, 2. , 0.7071067871,
[1.04044011, 1.06123822, 3. , 1.01850858],
[3.11614065, 1.40688837, 2. , 0.707106787,
[6.44583366, 6.76770586, 3. , 1.1268228811])

scipy.cluster.hierarchy.maxinconsts

scipy.cluster.hierarchy.maxinconsts (Z, R)
Return the maximum inconsistency coefficient for each non-singleton cluster and its children.

Parameters
Z [ndarray] The hierarchical clustering encoded as a matrix. See 1inkage for more infor-
mation.
R [ndarray] The inconsistency matrix.
Returns
MI [ndarray] A monotonic (n-1) -sized numpy array of doubles.
See also:
linkage

for a description of what a linkage matrix is.
inconsistent

for the creation of a inconsistency matrix.

3.3. API definition 331

SciPy Reference Guide, Release 1.8.0

Examples

>>> from scipy.cluster.hierarchy import median, maxinconsts

>>> from scipy.spatial.distance import pdist

inconsistent,

Given a data set X, we can apply a clustering method to obtain a linkage matrix Z. scipy.cluster.
hierarchy.inconsistent can be also used to obtain the inconsistency matrix R associated to this clustering

process:
>>> X = [[0, O], [0, 11, [1, 01,
o, 41, 10, 31, [1, 41,
4, o1, (3, 01, (4, 11,
[4, 41, [3, 41, T[4, 31]
>>> 7 = median (pdist (X))
>>> R = inconsistent (Z)
>>> 7
array ([[O. , 1. , 1. , 2. 1,
[3. , 4. , 1. , 2. 1,
[9. , 10. , 1. , 2. 1,
[6. ;7. , 1. ;2. 1,
[2. , 12. , 1.11803399, 3. 1,
[5. , 13. , 1.11803399, 3. 1,
[8. , 15. , 1.11803399, 3. 1,
[11. , 14. , 1.11803399, 3. 1,
[18. , 19. ;3. , 6. 1,
[16. , 17. , 3.5 , 6. 1,
[20. , 21. , 3.25 , 12. 11)
>>> R
array ([[1. , O. ;1 , 0 1,
(1. , O. , 1 , 0 1,
(1. , O. , 1 , O 1,
[1. , O. , 1 , 0. 1,
[1.05901699, 0.08346263, 2 , 0.707106787,
[1.05901699, 0.08346263, 2 , 0.707106787,
[1.05901699, 0.08346263, 2 , 0.707106787,
[1.05901699, 0.08346263, 2 , 0.707106787,
[1.74535599, 1.08655358, 3 , 1.154700547,
[1.91202266, 1.37522872, 3 , 1.154700547,
[3.25 , 0.25 , 3 , 0 11

Here, scipy.cluster.hierarchy.maxinconsts can be used to compute the maximum value of the
inconsistency statistic (the last column of R) for each non-singleton cluster and its children:

>>> maxinconsts (Z,
array ([O0. ,
0.70710678,
1.1547005417])

R)
0. ’
0.70710678,

0. + O, ’
0.70710678, 1.15470054,

0.70710678,
1.15470054,

332

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.cluster.hierarchy.maxdists

scipy.cluster.hierarchy.maxdists (Z)
Return the maximum distance between any non-singleton cluster.

Parameters
Z [ndarray] The hierarchical clustering encoded as a matrix. See 1inkage for more infor-
mation.
Returns

maxdists [ndarray] A (n-1) sized numpy array of doubles; MD [1] represents the maximum distance
between any cluster (including singletons) below and including the node with index i. More
specifically, MD [1] = Z[Q(i)-n, 2] .max () whereQ (1) isthe setof all node indices
below and including node i.

See also:

linkage
for a description of what a linkage matrix is.
is_monotonic

for testing for monotonicity of a linkage matrix.

Examples

>>> from scipy.cluster.hierarchy import median, maxdists
>>> from scipy.spatial.distance import pdist

Given a linkage matrix Z, scipy.cluster.hierarchy.maxdists computes for each new cluster gener-
ated (i.e., for each row of the linkage matrix) what is the maximum distance between any two child clusters.

Due to the nature of hierarchical clustering, in many cases this is going to be just the distance between the two
child clusters that were merged to form the current one - that is, Z[:,2].

However, for non-monotonic cluster assignments such as scipy.cluster.hierarchy.median clustering
this is not always the case: There may be cluster formations were the distance between the two clusters merged is
smaller than the distance between their children.

We can see this in an example:

>>> X = [[0,

~

0] [0
41, [0
01, (3,

4] [3

4

NN)
oS
<
—_———
N N N
~ ~
w > O
PR

[
[
[
[

~

>>> 7 = median (pdist (X))

>>> 7

array ([[O , 1. , 1 , 2. 1,
[3 , 4. , 1 , 2. 1,
[9 , 10. , 1 , 2. 1,
[6 , 7. , 1. , 2. 1,
[2 , 12, , 1.11803399, 3. 1,
[5 , 13. , 1.11803399, 3. 1,

(continues on next page)

3.3. API definition 333

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

[8. , 15. , 1.11803399, 3 1,
[11. , 14. , 1.11803399, 3. 1,
[18. , 19. , 3. , 6. 1,
[16. , 17, , 3.5 , 6 1,
[20. , 21. , 3.25 , 12 11)
>>> maxdists (Z)
array ([1. , 1. , 1. , 1. , 1.11803399,
1.11803399, 1.11803399, 1.11803399, 3. , 3.5 ,
3.5 1)

Note that while the distance between the two clusters merged when creating the last cluster is 3.25, there are two
children (clusters 16 and 17) whose distance is larger (3.5). Thus, scipy.cluster.hierarchy.maxdists
returns 3.5 in this case.

scipy.cluster.hierarchy.maxRstat

scipy.cluster.hierarchy.maxRstat (Z R, i)
Return the maximum statistic for each non-singleton cluster and its children.

Parameters
Z [array_like] The hierarchical clustering encoded as a matrix. See 1 inkage for more infor-
mation.
R [array_like] The inconsistency matrix.
i [int] The column of R to use as the statistic.
Returns
MR [ndarray] Calculates the maximum statistic for the i’th column of the inconsistency matrix R
for each non-singleton cluster node. MR [j] is the maximum over R [Q (j) -n, 1], where
Q (j) the set of all node ids corresponding to nodes below and including j.
See also:
linkage

for a description of what a linkage matrix is.
inconsistent

for the creation of a inconsistency matrix.

Examples

>>> from scipy.cluster.hierarchy import median, inconsistent, maxRstat
>>> from scipy.spatial.distance import pdist

Given a data set X, we can apply a clustering method to obtain a linkage matrix Z. scipy.cluster.
hierarchy.inconsistent can be also used to obtain the inconsistency matrix R associated to this clustering
process:

>>> X = [[O0,

~
~
~

4

~

[
~
— o/ —

[0
(o,
[4
[4

NI NN o)
<
SO W e
R
<
—_————
I N RN RN
~ ~ =~
w o
T
NN

4

~

334 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

>>> 7 = median (pdist (X))

>>> R = inconsistent (2)

>>> R

array ([[1. , 0. ’
(1. , 0. ,
(1. , 0. p
(1. , 0. ’
[1.05901699, 0.08346263,
[1.05901699, 0.08346263,
[1.05901699, 0.08346263,
[1.05901699, 0.08346263,
[1.74535599, 1.08655358,
[1.91202266, 1.37522872,
[3.25 , 0.25 ,

W w w NN e e

~

~

~

~

.70710678
.70710678
.70710678
.70710678
.15470054
.15470054

4

4

4

4

l4

Ok, P OO OO OoOOoO oo

1)

scipy.cluster.hierarchy.maxRstat can be used to compute the maximum value of each column of

R, for each non-singleton cluster and its children:

>>> maxRstat (Z, R,
array ([1. ,
1.05901699,
3.25 1)
>>> maxRstat (Z2, R,
array ([0. ’
0.08346263,
1.375228721)
>>> maxRstat (Z, R,
array ([O. ’
0.70710678,
1.1547005417])

0)
1. ,
1.05901699,
1)
0. ,

0.08346263,

3)
0. ’
0.70710678,

.05901699

.08346263

.70710678

14

14

14

14

14

14

=

. , 1.
.74535599, 1.

. , 0.
.08655358, 1.

. , O.
.15470054, 1.

05901699,
91202266,

08346263,
37522872,

70710678,
15470054,

scipy.cluster.hierarchy.to_mlab_linkage

scipy.cluster.hierarchy.to_mlab_linkage (Z)
Convert a linkage matrix to a MATLAB(TM) compatible one.

Converts a linkage matrix Z generated by the linkage function of this module to a MATLAB(TM) compatible one.
The return linkage matrix has the last column removed and the cluster indices are converted to 1 . . N indexing.

Parameters

Z [ndarray] A linkage matrix generated by scipy.cluster.hierarchy.

Returns

to_mlab_linkage

[ndarray] A linkage matrix compatible with MATLAB(TM)’s hierarchical clustering func-

tions.

The return linkage matrix has the last column removed and the cluster indices are converted

tol..

See also:

linkage

for a description of what a linkage matrix is.

N indexing.

3.3. API definition

335

SciPy Reference Guide, Release 1.8.0

from_mlab_linkage

transform from Matlab to SciPy format.

Examples

>>> from scipy.cluster.hierarchy import ward, to_mlab_linkage
>>> from scipy.spatial.distance import pdist

>>>

X =

~

~

~

~

— — —
S O O
~
S O B O
S
~

~
~

~ ~

NN EN RN
N

~

— — —

>>> 7 = ward(pdist (X))

>>> 7

array ([[O. , 1. 1. , 2. 1,
[3. , 4. 1. , 2. 1,
[6. , 1. 1. , 2. 1,
[9. , 10. 1. , 2. 1,
[2. , 12. 1.29099445, 3. 1,
[5. , 13. 1.29099445, 3. 1,
[8. , 14. 1.29099445, 3. 1,
[11. , 15. 1.29099445, 3. 1,
[16. , 17, 5.77350269, 6. 1,
[18. , 19. 5.77350269, 6. 1,
[20. , 21. 8.16496581, 12. 11)

After a linkage matrix Z has been created, we canuse scipy.cluster.hierarchy.to_mlab_linkage
to convert it into MATLAB format:

>>> mZ = to_mlab_linkage (Z)

>>> m7

array ([[1. 2. 1. 1,
[4. 5. 1. 1,
[7. 8. 1. 1,
[10. 11. 1. 1,
[3. 13. 1.290994457,
[6. 14. 1.290994457,
[9. 15. 1.290994457,
[12. 16. 1.290994457,
[17. 18. 5.77350269],
[19. 20. 5.77350269],
[21. 22. 8.1649658111])

The new linkage matrix mZ uses 1-indexing for all the clusters (instead of 0-indexing). Also, the last column of the

original linkage matrix has been dropped.

Routines for visualizing flat clusters.

dendrogram(Z][, p, truncate_mode, ...])

Plot the hierarchical clustering as a dendrogram.

336

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.cluster.hierarchy.dendrogram

scipy.cluster.hierarchy.dendrogram (Z, p=30, truncate_mode=None, color_threshold=None,

get_leaves=True, orientation="top’', labels=None,
count_sort=False, distance_sort=False, show_leaf counts=True,
no_plot=False, no_labels=Fualse, leaf _font_size=None,

leaf _rotation=None, leaf _label_func=None,
show_contracted=False, link_color_func=None, ax=None,
above_threshold_color="C0")

Plot the hierarchical clustering as a dendrogram.

The dendrogram illustrates how each cluster is composed by drawing a U-shaped link between a non-singleton
cluster and its children. The top of the U-link indicates a cluster merge. The two legs of the U-link indicate which

clusters were merged.

The length of the two legs of the U-link represents the distance between the child clusters.

It is also the cophenetic distance between original observations in the two children clusters.

Parameters

y/

p

[ndarray] The linkage matrix encoding the hierarchical clustering to render as a dendrogram.
See the 1 inkage function for more information on the format of Z.
[int, optional] The p parameter for t runcate_mode.

truncate_mode

[str, optional] The dendrogram can be hard to read when the original observation matrix
from which the linkage is derived is large. Truncation is used to condense the dendrogram.
There are several modes:

None No truncation is performed (default). Note: 'none' is an alias for None that’s
kept for backward compatibility.

'lastp' The last p non-singleton clusters formed in the linkage are the only non-leaf
nodes in the linkage; they correspond to rows Z [n-p—2:end] in Z. All other
non-singleton clusters are contracted into leaf nodes.

'level' No more than p levels of the dendrogram tree are displayed. A “level” includes
all nodes with p merges from the final merge.

Note: 'mtica' isanaliasfor ' level' that’s kept for backward compatibil-

1ty.

color_threshold

get_leaves

orientation

labels

[double, optional] For brevity, let ¢ be the color_threshold. Colors all the descendent
links below a cluster node & the same color if % is the first node below the cut threshold ¢.
All links connecting nodes with distances greater than or equal to the threshold are colored
with de default matplotlib color 'CO '. If ¢ is less than or equal to zero, all nodes are colored
'CO'. If color_threshold is None or ‘default’, corresponding with MATLAB(TM)
behavior, the threshold issetto 0. 7*max (Z[:, 2]).

[bool, optional] Includes alistR[' leaves '] =H in the result dictionary. For each ¢, H[1]
== 7, cluster node j appears in position i in the left-to-right traversal of the leaves, where
j<2n-—1landi <n.

[str, optional] The direction to plot the dendrogram, which can be any of the following strings:
'top' Plots the root at the top, and plot descendent links going downwards. (default).
'bottom'

Plots the root at the bottom, and plot descendent links going upwards.
'"left' Plots the root at the left, and plot descendent links going right.
'right' Plots the root at the right, and plot descendent links going left.
[ndarray, optional] By default, 1abels is None so the index of the original observation
is used to label the leaf nodes. Otherwise, this is an n-sized sequence, with n == 7Z.
shape[0] + 1. The labels[i] valueis the text to put under the ¢ th leaf node only if
it corresponds to an original observation and not a non-singleton cluster.

3.3. API definition

337

SciPy Reference Guide, Release 1.8.0

count_sort
[str or bool, optional] For each node n, the order (visually, from left-to-right) n’s two descen-
dent links are plotted is determined by this parameter, which can be any of the following
values:
False Nothing is done.
'ascending' or True
The child with the minimum number of original objects in its cluster is plotted
first.
'descending’
The child with the maximum number of original objects in its cluster is plotted
first.
Note, distance_sort and count_sort cannot both be True.
distance_sort
[str or bool, optional] For each node n, the order (visually, from left-to-right) n’s two descen-
dent links are plotted is determined by this parameter, which can be any of the following
values:
False Nothing is done.
'ascending' or True
The child with the minimum distance between its direct descendents is plotted
first.
'descending’'
The child with the maximum distance between its direct descendents is plotted
first.
Note distance_sort and count_sort cannot both be True.
show_leaf_counts
[bool, optional] When True, leaf nodes representing £ > 1 original observation are labeled
with the number of observations they contain in parentheses.
no_plot [bool, optional] When True, the final rendering is not performed. This is useful if only the
data structures computed for the rendering are needed or if matplotlib is not available.
no_labels [bool, optional] When True, no labels appear next to the leaf nodes in the rendering of the
dendrogram.
leaf _rotation
[double, optional] Specifies the angle (in degrees) to rotate the leaf labels. When unspecified,
the rotation is based on the number of nodes in the dendrogram (default is 0).
leaf_font_size
[int, optional] Specifies the font size (in points) of the leaf labels. When unspecified, the size
based on the number of nodes in the dendrogram.
leaf _label_func
[lambda or function, optional] When 1leaf_label_func is a callable function, for each
leaf with cluster index & < 2n — 1. The function is expected to return a string with the label
for the leaf.
Indices & < n correspond to original observations while indices k£ > n correspond to non-
singleton clusters.
For example, to label singletons with their node id and non-singletons with their id, count,
and inconsistency coeflicient, simply do:

First define the leaf label function.
def 11f(id):
if id < n:
return str(id)
else:
return ' | 1" % (id, count, R[n—-id, 3])

(continues on next page)

338

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

The text for the leaf nodes 1is going to be big so force
a rotation of 90 degrees.
dendrogram(Z, leaf_label_func=11f, leaf_rotation=90)

leaf_label_func can also be used together with.

— truncate_mode " parameter,

in which case you will get your leaves labeled after.

—truncation:

dendrogram(Z, leaf_label_func=11f, leaf_rotation=90,
truncate_mode="level', p=2)

show_contracted
[bool, optional] When True the heights of non-singleton nodes contracted into a leaf node
are plotted as crosses along the link connecting that leaf node. This really is only useful when
truncation is used (see t runcate_mode parameter).

link_color_func
[callable, optional] If given, link_color_function is called with each non-singleton id corre-
sponding to each U-shaped link it will paint. The function is expected to return the color to
paint the link, encoded as a matplotlib color string code. For example:

dendrogram(Z, link_color_func=lambda k: colors[k])

colors the direct links below each untruncated non-singleton node k using colors [k].
ax [matplotlib Axes instance, optional] If None and no_plot is not True, the dendrogram will be
plotted on the current axes. Otherwise if no_plot is not True the dendrogram will be plotted
on the given Axes instance. This can be useful if the dendrogram is part of a more complex
figure.
above_threshold_color
[str, optional] This matplotlib color string sets the color of the links above the
color_threshold. The defaultis "CO"'.

Returns
R [dict] A dictionary of data structures computed to render the dendrogram. Its has the fol-

lowing keys:

'color_list'
A list of color names. The k’th element represents the color of the k’th link.

'icoord' and 'dcoord’
Each of them is a list of lists. Let icoord = [I1, I2, ..., Ip] where
Ik = [xk1l, xk2, xk3, xk4] and dcoord = [D1, D2, ...,
Dp] where Dk = [ykl, yk2, yk3, yk4], then the k’th link painted is
(xk1, yk1) - (xk2, vk2) - (xk3, yk3) - (xk4, vyk4).

'ivl' A list of labels corresponding to the leaf nodes.

'leaves'
Foreachi,H[i] == j,cluster node j appears in position i in the left-to-right
traversal of the leaves, where j < 2n — 1 and ¢ < n. If j is less than n, the i-th
leaf node corresponds to an original observation. Otherwise, it corresponds to
a non-singleton cluster.

'leaves_color_list'
A list of color names. The k’th element represents the color of the k’th leaf.

See also:

linkage, set_link_color_palette

3.3. API definition 339

SciPy Reference Guide, Release 1.8.0

Notes

It is expected that the distances in Z [: , 2] be monotonic, otherwise crossings appear in the dendrogram.

Examples

>>> from scipy.cluster import hierarchy
>>> import matplotlib.pyplot as plt

A very basic example:

>>> ytdist = np.array([662., 877., 255., 412., 996.,
I 400., 754., 564., 138., 219.,
>>> 7 = hierarchy.linkage (ytdist, 'single')

>>> plt.figure ()

>>> dn = hierarchy.dendrogram(Z)

295., 468., 268.,
869., 669.1)

Now, plot in given axes, improve the color scheme and use both vertical and horizontal orientations:

C. orientation="top'")
>>> dn2 = hierarchy.dendrogram(Z, ax=axes[l],

orientation="right"')

>>> plt.show ()

>>> hierarchy.set_link_color_palette(['m', 'c', 'yv', 'k'])
>>> fig, axes = plt.subplots(l, 2, figsize=(8, 3))
>>> dnl = hierarchy.dendrogram(Z, ax=axes[0], above_threshold color='y"',

above_threshold_color="#bcbddc',

>>> hierarchy.set_link_color_palette (None) # reset to default after use

300 A

250 A _I_I

200 A

150 A

100 A

50 A

These are data structures and routines for representing hierarchies as tree objects.

ClusterNode(id[, left, right, dist, count]) A tree node class for representing a cluster.

continues on next page

340

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Table 6 - continued from previous page

leaves_1ist(Z) Return a list of leaf node ids.

to_tree(Z[, rd]) Convert a linkage matrix into an easy-to-use tree object.

cut_t ree(Z[, n_clusters, height]) Given a linkage matrix Z, return the cut tree.

optimal_leaf_ ordering(Z,y[, metric]) Given a linkage matrix Z and distance, reorder the cut
tree.

scipy.cluster.hierarchy.ClusterNode
class scipy.cluster.hierarchy.ClusterNode (id, left=None, right=None, dist=0, count=1)
A tree node class for representing a cluster.
Leaf nodes correspond to original observations, while non-leaf nodes correspond to non-singleton clusters.
The to_t ree function converts a matrix returned by the linkage function into an easy-to-use tree representation.

All parameter names are also attributes.

Parameters

id [int] The node id.
left [ClusterNode instance, optional] The left child tree node.
right [ClusterNode instance, optional] The right child tree node.
dist [float, optional] Distance for this cluster in the linkage matrix.
count [int, optional] The number of samples in this cluster.

See also:

to_tree

for converting a linkage matrix Z into a tree object.

Methods

get_count() The number of leaf nodes (original observations) be-
longing to the cluster node nd.

get_1id() The identifier of the target node.

get_lert() Return a reference to the left child tree object.

get_right() Return a reference to the right child tree object.

is_leaf() Return True if the target node is a leaf.

pre_order([func]) Perform pre-order traversal without recursive function
calls.

scipy.cluster.hierarchy.ClusterNode.get_count

ClusterNode.get_count ()
The number of leaf nodes (original observations) belonging to the cluster node nd. If the target node is a leaf,
1 is returned.

Returns

get_count [int] The number of leaf nodes below the target node.

3.3. API definition 341

SciPy Reference Guide, Release 1.8.0

300 -

250

200 -

150 A

100 A

50 1

N O P O W B~

2 5 1 0 3 4 0 100 200 300

scipy.cluster.hierarchy.ClusterNode.get_id

ClusterNode.get_id ()
The identifier of the target node.

For 0 <= i < n, i corresponds to original observation i. Forn <= i < 2n-1, i corresponds to
non-singleton cluster formed at iteration i —n.

Returns

id [int] The identifier of the target node.

scipy.cluster.hierarchy.ClusterNode.get_left

ClusterNode.get_left ()
Return a reference to the left child tree object.

Returns

left [ClusterNode] The left child of the target node. If the node is a leaf, None is returned.

scipy.cluster.hierarchy.ClusterNode.get_right

ClusterNode.get_right ()
Return a reference to the right child tree object.

Returns

right [ClusterNode] The left child of the target node. If the node is a leaf, None is returned.

scipy.cluster.hierarchy.ClusterNode.is_leaf

ClusterNode.is_leaf ()
Return True if the target node is a leaf.

Returns

leafness [bool] True if the target node is a leaf node.

342 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.cluster.hierarchy.ClusterNode.pre_order

ClusterNode.pre_order (func=<function ClusterNode.<lambda>>)
Perform pre-order traversal without recursive function calls.

When a leaf node is first encountered, func is called with the leaf node as its argument, and its result is
appended to the list.

For example, the statement:

ids = root.pre_order (lambda x: x.id)

returns a list of the node ids corresponding to the leaf nodes of the tree as they appear from left to right.

Parameters
func [function] Applied to each leaf ClusterNode object in the pre-order traversal. Given the
1i-th leaf node in the pre-order traversal n [i], the result of func (n[i]) is stored in
L[1]. If not provided, the index of the original observation to which the node corre-
sponds is used.
Returns
L [list] The pre-order traversal.

scipy.cluster.hierarchy.leaves_list

scipy.cluster.hierarchy.leaves_1list (Z)
Return a list of leaf node ids.

The return corresponds to the observation vector index as it appears in the tree from left to right. Z is a linkage

matrix.
Parameters
Z [ndarray] The hierarchical clustering encoded as a matrix. Z is a linkage matrix. See 1ink—
age for more information.
Returns
leaves_list [ndarray] The list of leaf node ids.
See also:
dendrogram

for information about dendrogram structure.

Examples

>>> from scipy.cluster.hierarchy import ward, dendrogram, leaves_list
>>> from scipy.spatial.distance import pdist
>>> from matplotlib import pyplot as plt

>>> X = [[0,

~
~

4

~
~

4

S O O
O
<
—_——
N N N
N
w > O
P

s O B O

e e
~

— — —

w w o O
~

[
[
[
[

4

~
~

3.3. API definition 343

SciPy Reference Guide, Release 1.8.0

>>> 7 = ward(pdist (X))

The linkage matrix Z represents a dendrogram, that is, a tree that encodes the structure of the clustering per-
formed. scipy.cluster.hierarchy.leaves_11ist shows the mapping between indices in the X dataset
and leaves in the dendrogram:

>>> leaves_list (Z)
array ([2, 0, 1, 5, 3, 4, 8, 6, 7, 11, 9, 101, dtype=int32)

>>> fig = plt.figure(figsize=(25, 10))
>>> dn = dendrogram(Z)
>>> plt.show ()

scipy.cluster.hierarchy.to_tree

scipy.cluster.hierarchy.to_tree (Z, rd=False)

Convert a linkage matrix into an easy-to-use tree object.
The reference to the root C1usterNode object is returned (by default).

Each ClusterNode objecthasa left, right, dist, id, and count attribute. The left and right attributes
point to ClusterNode objects that were combined to generate the cluster. If both are None then the CIusterNode
object is a leaf node, its count must be 1, and its distance is meaningless but set to 0.

Note: This function is provided for the convenience of the library user. ClusterNodes are not used as input to any of
the functions in this library.

Parameters
Z [ndarray] The linkage matrix in proper form (see the I i nkage function documentation).
rd [bool, optional] When False (default), a reference to the root C1usterNode object is re-
turned. Otherwise, a tuple (r, d) isreturned. r is a reference to the root node while d
is a list of ClusterNode objects - one per original entry in the linkage matrix plus en-
tries for all clustering steps. If a cluster id is less than the number of samples n in the data
that the linkage matrix describes, then it corresponds to a singleton cluster (leaf node). See
1inkage for more information on the assignment of cluster ids to clusters.
Returns

344

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

tree [ClusterNode or tuple (ClusterNode, list of ClusterNode)] If rd is False,a CIusterNode.
If rdis True, a list of length 2*n - 1, with n the number of samples. See the description

of rd above for more details.

See also:

linkage, is_valid_linkage, ClusterNode

Examples

>>> from scipy.cluster import hierarchy

>>> rng = np.random.default_rng()
>>> x = rng.random((5, 2))
>>> 7 = hierarchy.linkage (x)

>>> hierarchy.to_tree(2)
<scipy.cluster.hierarchy.ClusterNode object at

>>> rootnode, nodelist = hierarchy.to_tree(Z, rd=True)
>>> rootnode

<scipy.cluster.hierarchy.ClusterNode object at

>>> len (nodelist)

9

scipy.cluster.hierarchy.cut_tree

scipy.cluster.hierarchy.cut_tree (Z, n_clusters=None, height=None)

Given a linkage matrix Z, return the cut tree.

Parameters

Z [scipy.cluster.linkage array] The linkage matrix.

n_clusters [array_like, optional] Number of clusters in the tree at the cut point.

height [array_like, optional] The height at which to cut the tree. Only possible for ultrametric trees.
Returns

cutree [array] An array indicating group membership at each agglomeration step. Le., for a full cut

tree, in the first column each data point is in its own cluster. At the next step, two nodes are
merged. Finally, all singleton and non-singleton clusters are in one group. If n_clusters or
height are given, the columns correspond to the columns of n_clusters or height.

Examples

>>> from scipy import cluster
>>> import numpy as np
>>> from numpy.random import default_rng

>>> rng = default_rng/()
>>> X = rng.random((50, 4))
>>> 7 = cluster.hierarchy.ward (X)
>>> cutree = cluster.hierarchy.cut_tree(Z, n_clusters=[5,
>>> cutree[:10]
array ([[0, 0],
(1, 11,

101)

(continues on next page)

3.3. API definition

345

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

~ 0~

~

~ 0~ 0~

S wWw kO ww N
~

~

~ 0~

~

~

~

~ O U1 O DN D W
~

o~

random

scipy.cluster.hierarchy.optimal_leaf_ordering

scipy.cluster.hierarchy.optimal_leaf_ordering (Z, y, metric="euclidean’)
Given a linkage matrix Z and distance, reorder the cut tree.

Parameters
Z [ndarray] The hierarchical clustering encoded as a linkage matrix. See 1inkage for more
information on the return structure and algorithm.
y [ndarray] The condensed distance matrix from which Z was generated. Alternatively, a col-
lection of m observation vectors in n dimensions may be passed as an m by n array.
metric [str or function, optional] The distance metric to use in the case that y is a collection of
observation vectors; ignored otherwise. See the pdist function for a list of valid distance
metrics. A custom distance function can also be used.
Returns
Z_ordered [ndarray] A copy of the linkage matrix Z, reordered to minimize the distance between adja-
cent leaves.
Examples
>>> from scipy.cluster import hierarchy
>>> rng = np.random.default_rng()
>>> X = rng.standard_normal ((10, 10))
>>> 7 = hierarchy.ward (X)
>>> hierarchy.leaves_list (Z)
array ([0, 3, 1, 9, 2, 5, 7, 4, 6, 8], dtype=int32)
>>> hierarchy.leaves_list (hierarchy.optimal_leaf_ordering(z, X))
array ([3, 0, 2, 5, 7, 4, 8, 6, 9, 1], dtype=int32)

These are predicates for checking the validity of linkage and inconsistency matrices as well as for checking isomorphism

of two flat cluster assignments.

is_valid_im(R[, warning, throw, name])

Return True if the inconsistency matrix passed is valid.

is_valid_1linkage(Z[, warning, throw, name])

Check the validity of a linkage matrix.

is_isomorphic(Tl, T2)

Determine if two different cluster assignments are equiv-
alent.

is_monotonic(Z)

Return True if the linkage passed is monotonic.

correspond(Z,Y)

Check for correspondence between linkage and con-
densed distance matrices.

continues on next page

346

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Table 8 - continued from previous page
num_obs_linkage(Z) Return the number of original observations of the linkage
matrix passed.

scipy.cluster.hierarchy.is_valid_im
scipy.cluster.hierarchy.is_valid_im (R, warning=False, throw=False, name=None)
Return True if the inconsistency matrix passed is valid.

It must be a n by 4 array of doubles. The standard deviations R[:, 1] must be nonnegative. The link counts
R[:, 2] must be positive and no greater than n — 1.

Parameters
R [ndarray] The inconsistency matrix to check for validity.
warning [bool, optional] When True, issues a Python warning if the linkage matrix passed is invalid.
throw [bool, optional] When True, throws a Python exception if the linkage matrix passed is invalid.
name [str, optional] This string refers to the variable name of the invalid linkage matrix.
Returns
b [bool] True if the inconsistency matrix is valid.
See also:
linkage

for a description of what a linkage matrix is.
inconsistent

for the creation of a inconsistency matrix.

Examples

>>> from scipy.cluster.hierarchy import ward, inconsistent, is_valid_im
>>> from scipy.spatial.distance import pdist

Given a data set X, we can apply a clustering method to obtain a linkage matrix Z. scipy.cluster.
hierarchy.inconsistent can be also used to obtain the inconsistency matrix R associated to this clustering

process:
>>> X = [[0, O], [0, 1], [1, O1,
o, 41, 10, 31, [1, 41,
4, o1, 13, 01, (4, 11,
[4, 41, [3, 41, [4, 31]
>>> 7 = ward(pdist (X))
>>> R = inconsistent (Z)
>>> 7
array ([[O , 1. , 1 , 2 1,
[3 , 4. , 1 , 2 I
[6 , 1. ;1 , 2 1y
[9 , 10. , 1. ;2 1,
[2 , 12, , 1.29099445, 3 1,

(continues on next page)

3.3. API definition 347

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

[5 , 13. , 1.29099445, 3. 1,
[8. , 14. , 1.29099445, 3. 1,
[11. , 15. , 1.29099445, 3. 1,
[16 , 17, P 5.77350269, 6. 1,
[18 , 19. , 5.77350269, 6. 1,
[20 , 21. , 8.16496581, 12. 11)
>>> R
array ([[1 , 0. , 1 , 0 1,
[1 , 0. , 1 , 0 1,
[1 , O. , 1 , O 1,
[1. , O. , 1 , O. 1,
[1.14549722, 0.20576415, 2 , 0.70710678],
[1.14549722, 0.20576415, 2 , 0.70710678],
[1.14549722, 0.20576415, 2 , 0.70710678],
[1.14549722, 0.20576415, 2 , 0.707106787],
[2.78516386, 2.58797734, 3 , 1.154700547,
[2.78516386, 2.58797734, 3 , 1.154700547,
[6.57065706, 1.38071187, 3 , 1.15470054]7)
Now we can use scipy.cluster.hierarchy.is_valid_imto verify that R is correct:
>>> is valid_im (R)
True

However, if R is wrongly constructed (e.g., one of the standard deviations is set to a negative value), then the check
will fail:

>>> R[-1,1] = R[-1,1] * -1
>>> is_valid_im (R)
False

scipy.cluster.hierarchy.is_valid_linkage

scipy.cluster.hierarchy.is_valid_linkage (Z, warning=False, throw=False, name=None)
Check the validity of a linkage matrix.

A linkage matrix is valid if it is a 2-D array (type double) with n rows and 4 columns. The first two columns must
contain indices between 0 and 2n — 1. For a given row i, the following two expressions have to hold:

0<2z[1,0]<i+n—10< Z[i,1]<i+n—1

Le., a cluster cannot join another cluster unless the cluster being joined has been generated.

Parameters
y/ [array_like] Linkage matrix.
warning [bool, optional] When True, issues a Python warning if the linkage matrix passed is invalid.
throw [bool, optional] When True, throws a Python exception if the linkage matrix passed is invalid.
name [str, optional] This string refers to the variable name of the invalid linkage matrix.

Returns
b [bool] True if the inconsistency matrix is valid.

See also:

348 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

linkage

for a description of what a linkage matrix is.

Examples

>>> from scipy.cluster.hierarchy import ward,

is_valid_linkage

>>> from scipy.spatial.distance import pdist

All linkage matrices generated by the clustering methods in this module will be valid (i.e., they will have the
appropriate dimensions and the two required expressions will hold for all the rows).

We can check this using scipy.cluster.hierarchy.is_valid_linkage:

>>> X = [[0, 0], [0, 1] 01,
[0, 41, [0, 3] 41,
[4, 01, [3, 0] 11,
(4, 41, [3, 4] 311
>>> 7 = ward(pdist (X))
>>> 7
array ([[O. , 1. 1. , 2. 1,
[3. , 4. 1. , 2. 1,
[6. , 1. 1. , 2. 1,
[9. , 10. 1. , 2. 1,
[2. , 12, 1.29099445, 3. 1,
[5. , 13. 1.29099445, 3. 1,
[8. , 14. 1.29099445, 3. 1,
[11. , 15. 1.29099445, 3. 1,
[16. , 17. 5.77350269, 6. 1,
[18. , 19. , 5.77350269, 6. 1,
[20. , 21. , 8.16496581, 12. 11)
>>> is_valid_linkage (Z)
True

However, if we create a linkage matrix in a wrong way - or if we modify a valid one in a way that any of the required
expressions don’t hold anymore, then the check will fail:

>>> Z[3]1[1] = 20 # the cluster number 20 is not defined at this point
>>> is_valid_linkage (Z)
False

scipy.cluster.hierarchy.is_isomorphic

scipy.cluster.hierarchy.is_isomorphic (71, T2)
Determine if two different cluster assignments are equivalent.

Parameters
T1 [array_like] An assignment of singleton cluster ids to flat cluster ids.
T2 [array_like] An assignment of singleton cluster ids to flat cluster ids.
Returns
b [bool] Whether the flat cluster assignments 7'/ and 72 are equivalent.

3.3. API definition 349

SciPy Reference Guide, Release 1.8.0

See also:

linkage
for a description of what a linkage matrix is.
fcluster

for the creation of flat cluster assignments.

Examples

>>> from scipy.cluster.hierarchy import fcluster, is_isomorphic
>>> from scipy.cluster.hierarchy import single, complete
>>> from scipy.spatial.distance import pdist

Two flat cluster assignments can be isomorphic if they represent the same cluster assignment, with different labels.

For example, we can use the scipy.cluster.hierarchy.single: method and flatten the output to four
clusters:

>>> X = [[0, O], [0, 1], [1, O7,
o, 41, 10, 31, [1, 41,
(4, 01, (3, 01, [4, 11,
(4, 41, [3, 41, [4, 311
>>> 7 = single (pdist (X))
>>> T = fcluster(Z, 1, criterion='distance')

>>> T
array ([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32)

We can then do the same using the scipy.cluster.hierarchy.complete: method:

>>> 7 = complete (pdist (X))

>>> T_ = fcluster(Z, 1.5, criterion='distance')

>>> T_

array (1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

As we can see, in both cases we obtain four clusters and all the data points are distributed in the same way - the
only thing that changes are the flat cluster labels (3 => 1, 4 =>2, 2 =>3 and 4 =>1), so both cluster assignments are
isomorphic:

>>> is_isomorphic (T, T_)
True

350

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.cluster.hierarchy.is_monotonic
scipy.cluster.hierarchy.is_monotonic (Z)
Return True if the linkage passed is monotonic.

The linkage is monotonic if for every cluster s and ¢ joined, the distance between them is no less than the distance
between any previously joined clusters.

Parameters
Z [ndarray] The linkage matrix to check for monotonicity.
Returns
b [bool] A boolean indicating whether the linkage is monotonic.
See also:
linkage

for a description of what a linkage matrix is.

Examples

>>> from scipy.cluster.hierarchy import median, ward, is_monotonic
>>> from scipy.spatial.distance import pdist

By definition, some hierarchical clustering algorithms - such as scipy.cluster.hierarchy.ward - pro-
duce monotonic assignments of samples to clusters; however, this is not always true for other hierarchical methods
-e.g. scipy.cluster.hierarchy.median

Given a linkage matrix 7 (as the result of a hierarchical clustering method) we can test programmatically whether
it has the monotonicity property or not, using scipy.cluster.hierarchy.is_monotonic:

>>> X = [[0, O], [0, 17, [1, O],
o, 41, 10, 31, [1, 471,
4, 01, (3, 01, [4, 11,
(4, 41, [3, 41, [4, 311
>>> 7 = ward(pdist (X))
>>> 7
array ([[O. , 1. , 1. , 2. 1,
[3. , 4. , 1. , 2. 1,
[6. , 1. , 1. , 2. 1,
[9. , 10. , 1. , 2. 1,
[2. , 12, , 1.29099445, 3. 1,
[5. , 13. , 1.29099445, 3. 1,
[8. , 14. , 1.29099445, 3. 1,
[11. , 15. , 1.29099445, 3. 1,
[16. , 17, , 5.77350269, 6. 1,
[18. , 19. , 5.77350269, 6. 1,
[20. , 21. , 8.16496581, 12. 11)
>>> is_monotonic (Z)
True

3.3. API definition 351

SciPy Reference Guide, Release 1.8.0

>>> 7 = median (pdist (X))

>>> 7

array ([[O. , 1. , 1. , 2. 1,
[3. , 4. , 1. , 2. 1,
[9. , 10. , 1. , 2. 1,
[6. , 1. , 1. , 2. 1,
[2. , 12, , 1.11803399, 3. 1,
[5. , 13, , 1.11803399, 3. 1,
[8. , 15. , 1.11803399, 3. 1,
[11. , 14. , 1.11803399, 3. 1,
[18. , 19. , 3. , 6. 1,
[16. , 17. , 3.5 , 6. 1,
[20 , 21 , 3.25 , 12. 11)

>>> is_monotonic(Z)

False

Note that this method is equivalent to just verifying that the distances in the third column of the linkage matrix
appear in a monotonically increasing order.

scipy.cluster.hierarchy.correspond

scipy.cluster.hierarchy.correspond (Z,7Y)

Check for correspondence between linkage and condensed distance matrices.
They must have the same number of original observations for the check to succeed.

This function is useful as a sanity check in algorithms that make extensive use of linkage and distance matrices that
must correspond to the same set of original observations.

Parameters
V/ [array_like] The linkage matrix to check for correspondence.
Y [array_like] The condensed distance matrix to check for correspondence.
Returns
b [bool] A boolean indicating whether the linkage matrix and distance matrix could possibly
correspond to one another.
See also:
linkage

for a description of what a linkage matrix is.

Examples

>>> from scipy.cluster.hierarchy import ward, correspond
>>> from scipy.spatial.distance import pdist

This method can be used to check if a given linkage matrix Z has been obtained from the application of a cluster
method over a dataset X:

352

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

>>> X = [[0, O], [0, 11, [1, O1,
[0, 41, [0, 31, [1, 41,
r4, 01, 3, 01, [4, 11,
4, 41, I[3, 41, T[4, 31]

>>> X_condensed = pdist (X)

>>> 7 = ward (X_condensed)

Here, we can compare Z and X (in condensed form):

>>> correspond (Z, X_condensed)
True

scipy.cluster.hierarchy.num_obs_linkage

scipy.cluster.hierarchy.num_obs_linkage (Z)
Return the number of original observations of the linkage matrix passed.

Parameters
y/ [ndarray] The linkage matrix on which to perform the operation.
Returns
n [int] The number of original observations in the linkage.
Examples

>>> from scipy.cluster.hierarchy import ward, num_obs_linkage
>>> from scipy.spatial.distance import pdist

>>> X = [[0, O], (O, 11, [%1, OI,
(o, 41, 10, 31, [1, 41,
4, 01, (3, 01, [4, 11,
[4, 41, [3, 41, T[4, 31]
>>> 7 = ward(pdist (X))

Z is a linkage matrix obtained after using the Ward clustering method with X, a dataset with 12 data points.

>>> num_obs_linkage (2)
12

Utility routines for plotting:

set_link_color_palette(palette) Set list of matplotlib color codes for use by dendrogram.

3.3. API definition 353

SciPy Reference Guide, Release 1.8.0

scipy.cluster.hierarchy.set_link_color_palette
scipy.cluster.hierarchy.set_link_color_palette (palette)
Set list of matplotlib color codes for use by dendrogram.

Note that this palette is global (i.e., setting it once changes the colors for all subsequent calls to dendrogram)
and that it affects only the the colors below color_threshold.

Note that dendrogram also accepts a custom coloring function through its 1ink_color_func keyword,
which is more flexible and non-global.

Parameters
palette [list of str or None] A list of matplotlib color codes. The order of the color codes is the order
in which the colors are cycled through when color thresholding in the dendrogram.
If None, resets the palette to its default (which are matplotlib default colors C1 to C9).
Returns
None
See also:
dendrogram
Notes

Ability to reset the palette with None added in SciPy 0.17.0.

Examples

>>> from scipy.cluster import hierarchy

>>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268.,
. 400., 754., 564., 138., 219., 869., 669.1)

>>> 7 = hierarchy.linkage (ytdist, 'single')

>>> dn = hierarchy.dendrogram(Z, no_plot=True)

>>> dn['color_list']

[ct', 'eco', 'cor', rco', 'co']

>>> hierarchy.set_link_color_palette(['c', 'm', 'y', 'k'])

>>> dn = hierarchy.dendrogram(Z, no_plot=True, above_threshold_color='b")
>>> dn['color_list']

['c', 'b', 'b', 'b', 'b']

>>> dn = hierarchy.dendrogram(Z, no_plot=True, color_threshold=267,

. above_threshold_color='k")

>>> dn['color_list']
['c', ! m', 'k', 'k']

m' |l
14

Now, reset the color palette to its default:

>>> hierarchy.set_link_color_palette (None)

Utility classes:

354 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

DisjointSet([elements]) Disjoint set data structure for incremental connectivity
queries.

scipy.cluster.hierarchy.DisjointSet

class scipy.cluster.hierarchy.DisjointSet (elements=None)
Disjoint set data structure for incremental connectivity queries.

New in version 1.6.0.
Notes

This class implements the disjoint set [1], also known as the union-find or merge-find data structure. The find
operation (implemented in ___getitem_) implements the path halving variant. The merge method implements
the merge by size variant.

References

(1]

Examples

>>> from scipy.cluster.hierarchy import DisjointSet

Initialize a disjoint set:

>>> disjoint_set = DisjointSet ([1, 2, 3, 'a', 'b'])

Merge some subsets:

>>> disjoint_set.merge (1, 2)
True

>>> disjoint_set.merge (3, 'a')
True

>>> disjoint_set.merge('a', 'b'")
True

>>> disjoint_set.merge('b', 'b'")
False

Find root elements:

>>> disjoint_set[2]

1

>>> disjoint_set['b']
3

Test connectivity:

3.3. API definition 355

SciPy Reference Guide, Release 1.8.0

>>> disjoint_set.connected(l, 2)
True

False

>>> disjoint_set.connected(l, 'b')

List elements in disjoint set:

>>> list (disjoint_set)
(1, 2, 3, 'a', 'b']

Get the subset containing ‘a’:

>>> disjoint_set.subset ('a')
{'a', 3, 'b'}

Get all subsets in the disjoint set:

>>> disjoint_set.subsets ()
({1, 21, {'a', 3, 'b'}]

Attributes

n_subsets [int] The number of subsets.

Methods
add(x) Add element x to disjoint set
merge(X, y) Merge the subsets of x and y.

connected(X,y)

Test whether x and y are in the same subset.

subset(x)

Get the subset containing x.

subsets()

Get all the subsets in the disjoint set.

__getitem__(X)

Find the root element of x.

scipy.cluster.hierarchy.DisjointSet.add

DisjointSet.add (x)
Add element x to disjoint set

scipy.cluster.hierarchy.DisjointSet.merge

DisjointSet .merge (x, y)
Merge the subsets of x and y.

The smaller subset (the child) is merged into the larger subset (the parent). If the subsets are of equal size,
the root element which was first inserted into the disjoint set is selected as the parent.

Parameters

X, y [hashable object] Elements to merge.

Returns

merged [bool] True if x and y were in disjoint sets, False otherwise.

356

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.cluster.hierarchy.DisjointSet.connected

DisjointSet.connected (1, y)
Test whether x and y are in the same subset.

Parameters
X, ¥ [hashable object] Elements to test.
Returns
result [bool] True if x and y are in the same set, False otherwise.

scipy.cluster.hierarchy.DisjointSet.subset

DisjointSet.subset (x)
Get the subset containing x.

Parameters

X [hashable object] Input element.
Returns

result [set] Subset containing x.

scipy.cluster.hierarchy.DisjointSet.subsets

DisjointSet.subsets ()
Get all the subsets in the disjoint set.

Returns

result [list] Subsets in the disjoint set.

scipy.cluster.hierarchy.DisjointSet.__getitem__

DisjointSet.__getitem__ (x)
Find the root element of x.

Parameters

X [hashable object] Input element.
Returns

root [hashable object] Root element of x.

3.3.4 Constants (scipy.constants)

Physical and mathematical constants and units.

3.3. API definition 357

SciPy Reference Guide, Release 1.8.0

Mathematical constants

pi

Pi

golden

Golden ratio

golden_ratio | Golden ratio

Physical constants

c speed of light in vacuum
speed_of_light speed of light in vacuum

mu_0 the magnetic constant (i
epsilon_0 the electric constant (vacuum permittivity), €
h the Planck constant i

Planck the Planck constant i

hbar h=h/(2n)

G Newtonian constant of gravitation
gravitational_constant | Newtonian constant of gravitation
g standard acceleration of gravity

e elementary charge

elementary_charge

elementary charge

R

molar gas constant

gas_constant

molar gas constant

alpha fine-structure constant
fine_structure fine-structure constant

N_A Avogadro constant
Avogadro Avogadro constant

k Boltzmann constant
Boltzmann Boltzmann constant

sigma Stefan-Boltzmann constant

Stefan_Boltzmann

Stefan-Boltzmann constant o

Wien Wien displacement law constant
Rydberg Rydberg constant

m_e electron mass
electron_mass electron mass

m_p proton mass

proton_mass proton mass

m_n neutron mass

neutron_mass

neutron mass

Constants database

In addition to the above variables, scipy.constants also contains the 2018 CODATA recommended values
[CODATA2018] database containing more physical constants.

value(key) Value in physical_constants indexed by key
unit(key) Unit in physical_constants indexed by key
precision(key) Relative precision in physical_constants indexed by key

£1ind([sub, disp])

Return list of physical_constant keys containing a given
string.

continues on next page

358

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Table 12 - continued from previous page

ConstantWarning Accessing a constant no longer in current CODATA data

set

scipy.constants.value

scipy.constants.value (key)
Value in physical_constants indexed by key

Parameters
key [Python string or unicode] Key in dictionary physical constants
Returns
value [float] Value in physical_constants corresponding to key
Examples

>>> from scipy import constants
>>> constants.value (u'elementary charge')
1.602176634e-19

scipy.constants.unit

scipy.constants.unit (key)
Unit in physical_constants indexed by key

Parameters
key [Python string or unicode] Key in dictionary physical_ constants
Returns
unit [Python string] Unit in physical_constants corresponding to key
Examples

>>> from scipy import constants
>>> constants.unit (u'proton mass')
lkgl

scipy.constants.precision

scipy.constants.precision (key)
Relative precision in physical_constants indexed by key

Parameters

key [Python string or unicode] Key in dictionary physical_constants
Returns

prec [float] Relative precision in physical constants corresponding to key

3.3. API definition

359

SciPy Reference Guide, Release 1.8.0

Examples

>>> constant
5.1e-37

>>> from scipy import constants

s.precision(u'proton mass')

scipy.constants.find

scipy.constants. find (sub=None, disp=False)
Return list of physical_constant keys containing a given string.

Parameters

sub
disp

Returns

keys

Examples

[str, unicode] Sub-string to search keys for. By default, return all keys.
[bool] If True, print the keys that are found and return None. Otherwise, return the list of
keys without printing anything.

[list or None] If disp is False, the list of keys is returned. Otherwise, None is returned.

>>> from scipy.constants import find, physical_constants

Which keys in the

physical_constants dictionary contain ‘boltzmann’?

['"Boltzmann
'Boltzmann
'Boltzmann
'Boltzmann

>>> find('boltzmann')

constant',

constant in Hz/K',

constant in eV/K',

constant in inverse meter per kelvin',

'Stefan-Boltzmann constant']

Get the constant called ‘Boltzmann constant in Hz/K’:

>>> physical_constants['Boltzmann constant in Hz/K']
(20836619120.0, 'Hz K*=1', 0.0)

Find constants with ‘radius’ in the key:

'classical

>>> find('radius')
['Bohr radius',

electron radius',

'deuteron rms charge radius',

'proton rms charge radius']
>>> physical_constants|['classical electron radius']
(2.8179403262e-15, 'm', 1.3e-24)

360

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.constants.ConstantWarning

exception scipy.constants.ConstantWarning
Accessing a constant no longer in current CODATA data set

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

scipy.constants.physical_constants
Dictionary of physical constants, of the format physical_constants[name] = (value, unit, un-
certainty).

Available constants:

alpha particle mass 6.6446573357e-27 kg

alpha particle mass energy equivalent 5.9719201914e-10J

alpha particle mass energy equivalent in MeV 3727.3794066 MeV
alpha particle mass in u 4.001506179127 u

alpha particle molar mass 0.0040015061777 kg mol*-1
alpha particle relative atomic mass 4.001506179127

alpha particle—-electron mass ratio 7294.29954142

alpha particle-proton mass ratio 3.97259969009

Angstrom star 1.00001495e-10 m

atomic mass constant

1.6605390666e-27 kg

1.4924180856e-10 J

atomic mass constant energy equivalent

931.49410242 MeV

atomic mass constant energy equivalent in MeV

atomic mass unit-electron volt relationship 931494102.42 eV
atomic mass unit-hartree relationship 34231776.874 E_h
atomic mass unit-hertz relationship 2.25234271871e+23 Hz

751300661040000.0 m"-1

atomic mass unit-inverse meter relationship

1.4924180856e-10 J

atomic mass unit—-joule relationship

10809540191600.0 K

atomic mass unit-kelvin relationship

atomic mass unit-kilogram relationship

1.6605390666e-27 kg

atomic unit of 1st hyperpolarizability 3.2063613061e-53 C*3 m”3 JA-2
atomic unit of 2nd hyperpolarizability 6.2353799905e-65 C" m”4 JA-3
atomic unit of action 1.054571817e-34 J s

atomic unit of charge 1.602176634e-19 C

atomic unit of charge density 1081202384570.0 C m"-3
atomic unit of current 0.00662361823751 A

atomic unit of electric dipole mom. 8.4783536255e-30 C m
atomic unit of electric field 514220674763.0 V m~-1
atomic unit of electric field gradient 9.7173624292e+21 V m”-2
atomic unit of electric polarizability 1.64877727436e-41 C"2 m"2 JA-1
atomic unit of electric potential 27.211386245988 V

atomic unit of electric quadrupole mom. 4.4865515246e-40 C m"2
atomic unit of energy 4.3597447222071e-18]
atomic unit of force 8.2387234983e-08 N

atomic unit of length 5.29177210903e-11 m

atomic unit of mag. dipole mom. 1.85480201566¢-23 J TA-1
atomic unit of mag. flux density 235051.756758 T

atomic unit of magnetizability 7.8910366008e-29 J TA-2
atomic unit of mass 9.1093837015e-31 kg

continues on next page

3.3. API definition

361

SciPy Reference Guide, Release 1.8.0

Table 13 - continued from previous page

atomic unit of momentum

1.9928519141e-24 kg m s"-1

atomic unit of permittivity

1.11265005545¢e-10 F m”-1

atomic unit of time

2.4188843265857e-17 s

atomic unit of wvelocity

2187691.26364 m s”-1

Avogadro constant

6.02214076e+23 mol”-1

Bohr magneton

9.2740100783e-24 J TA-1

Bohr magneton in eV/T

5.788381806e-05 eV T"-1

Bohr magneton in Hz/T

13996244936.1 Hz TA-1

Bohr magneton in inverse meter per tesla

46.686447783 m"-1 TA-1

Bohr magneton in K/T

0.67171381563 K TA-1

Bohr radius

5.29177210903e-11 m

Boltzmann constant

1.380649¢e-23 J K~-1

Boltzmann constant in eV/K

8.617333262e-05 eV KA1

Boltzmann constant in Hz/K

20836619120.0 Hz K~-1

Boltzmann constant in inverse meter per kelvin

69.50348004 m”-1 K~-1

classical electron radius

2.8179403262e-15 m

Compton wavelength

2.42631023867e-12 m

conductance quantum

7.748091729e-05 S

conventional value of ampere-90

1.00000008887 A

conventional value of coulomb-90

1.00000008887 C

conventional value of farad-90

0.9999999822 F

conventional value of henry-90

1.00000001779 H

conventional value of Josephson constant

483597900000000.0 Hz VA-1

conventional value of ohm-90

1.00000001779 ohm

conventional value of volt-90

1.00000010666 V

conventional value of von Klitzing constant

25812.807 ohm

conventional value of watt-90

1.00000019553 W

Cu x unit

1.00207697e-13 m

deuteron g factor 0.8574382338
deuteron mag. mom. 4.330735094e-27 J TA-1
deuteron mag. mom. to Bohr magneton ratio 0.000466975457
deuteron mag. mom. to nuclear magneton ratio 0.8574382338

deuteron mass

3.3435837724e-27 kg

deuteron mass energy equivalent

3.00506323102e-10J

deuteron mass energy equivalent in MeV

1875.61294257 MeV

deuteron mass in u 2.013553212745 u
deuteron molar mass 0.00201355321205 kg mol*-1
deuteron relative atomic mass 2.013553212745
deuteron rms charge radius 2.12799¢-15 m
deuteron-electron mag. mom. ratio -0.0004664345551
deuteron—-electron mass ratio 3670.48296788
deuteron—-neutron mag. mom. ratio -0.44820653
deuteron-proton mag. mom. ratio 0.30701220939

deuteron-proton mass ratio

1.99900750139

electron charge to mass quotient

-175882001076.0 C kg”-1

electron g factor

-2.00231930436256

electron gyromag. ratio

176085963023.0 s*-1 TA-1

electron gyromag. ratio in MHz/T

28024.9514242 MHz T"-1

electron mag. mom.

-9.2847647043e-24 J TA-1

electron mag. mom. anomaly

0.00115965218128

continues on next page

362

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Table 13 - continued from previous page

electron mag. mom. to Bohr magneton ratio

-1.00115965218128

electron mag. mom. to nuclear magneton ratio

-1838.28197188

electron mass

9.1093837015e-31 kg

electron mass energy equivalent

8.187105776%¢-14]

electron mass energy equivalent in MeV 0.51099895 MeV
electron mass in u 0.000548579909065 u
electron molar mass 5.4857990888e-07 kg mol”-1
electron relative atomic mass 0.000548579909065
electron to alpha particle mass ratio 0.0001370933554787
electron to shielded helion mag. mom. ratio 864.058257

electron to shielded proton mag. mom. ratio -658.2275971

electron volt

1.602176634e-19]

electron volt—atomic mass unit relationship

1.07354410233e-09 u

electron volt-hartree relationship

0.036749322175655 E_h

electron volt-hertz relationship

241798924200000.0 Hz

electron volt-inverse meter relationship

806554.3937 m"-1

electron volt—joule relationship

1.602176634e-19]

electron volt-kelvin relationship 11604.51812 K
electron volt-kilogram relationship 1.782661921e-36 kg
electron-deuteron mag. mom. ratio -2143.9234915
electron-deuteron mass ratio 0.0002724437107462
electron-helion mass ratio 0.0001819543074573
electron-muon mag. mom. ratio 206.7669883
electron—-muon mass ratio 0.00483633169
electron—-neutron mag. mom. ratio 960.9205
electron—-neutron mass ratio 0.00054386734424
electron-proton mag. mom. ratio -658.21068789
electron-proton mass ratio 0.000544617021487
electron-tau mass ratio 0.000287585
electron-triton mass ratio 0.0001819200062251

elementary charge

1.602176634e-19 C

elementary charge over h-bar

1519267447000000.0 A JA-1

Faraday constant

96485.33212 C mol~-1

Fermi coupling constant

1.1663787e-05 GeVA-2

fine-structure constant

0.0072973525693

first radiation constant

3.741771852e-16 W m”"2

first radiation constant for spectral radiance

1.191042972e-16 W m”2 sr -1

Hartree energy

4.3597447222071e-18J

Hartree energy in eV 27.211386245988 eV
hartree-atomic mass unit relationship 2.92126232205e-08 u
hartree-electron volt relationship 27.211386245988 eV
hartree-hertz relationship 6579683920502000.0 Hz

hartree-inverse meter relationship

21947463.13632 m"-1

hartree-joule relationship

4.3597447222071e-18J

hartree-kelvin relationship 315775.02480407 K
hartree-kilogram relationship 4.8508702095432¢-35 kg
helion g factor -4.255250615

helion mag. mom. -1.074617532e-26] TA-1
helion mag. mom. to Bohr magneton ratio -0.001158740958

helion mag. mom. to nuclear magneton ratio

-2.127625307

continues on next page

3.3. API definition

363

SciPy Reference Guide, Release 1.8.0

Table 13 - continued from previous page

helion

mass

5.0064127796e-27 kg

helion

mass energy equivalent

4.4995394125e-10J

helion mass energy equivalent in MeV 2808.39160743 MeV
helion mass in u 3.014932247175u

helion molar mass 0.00301493224613 kg mol~-1
helion relative atomic mass 3.014932247175

helion shielding shift 5.996743e-05
helion-electron mass ratio 5495.88528007
helion-proton mass ratio 2.99315267167

hertz-a

tomic mass unit relationship

4.4398216652e-24 u

hertz-e

lectron volt relationship

4.135667696e-15 eV

hertz-h

artree relationship

1.519829846057e-16 E_h

hertz—-inverse meter relationship 3.3356409519815204e-09 m”-1
hertz—-joule relationship 6.62607015e-34J
hertz-kelvin relationship 4.799243073e-11 K

hertz-k

ilogram relationship

7.372497323e-51 kg

hyperfine transition frequency of Cs-133 9192631770.0 Hz
inverse fine-structure constant 137.035999084
inverse meter-atomic mass unit relationship 1.3310250501e-15u
inverse meter—-electron volt relationship 1.239841984¢e-06 eV
inverse meter-hartree relationship 4.556335252912e-08 E_h
inverse meter-hertz relationship 299792458.0 Hz
inverse meter-joule relationship 1.986445857e-25]
inverse meter-kelvin relationship 0.01438776877 K
inverse meter-kilogram relationship 2.210219094¢e-42 kg
inverse of conductance quantum 12906.40372 ohm
Josephson constant 483597848400000.0 Hz VA-1
joule—atomic mass unit relationship 6700535256.5u
joule—electron volt relationship 6.241509074e+18 eV
joule-hartree relationship 2.2937122783963e+17 E_h
joule—hertz relationship 1.509190179¢+33 Hz
joule-inverse meter relationship 5.034116567e+24 m”-1
joule—-kelvin relationship 7.242970516e+22 K
joule-kilogram relationship 1.1126500560536185e-17 kg
kelvin—-atomic mass unit relationship 9.2510873014e-14 u
kelvin-electron volt relationship 8.617333262e-05 eV
kelvin-hartree relationship 3.1668115634556e-06 E_h
kelvin-hertz relationship 20836619120.0 Hz
kelvin-inverse meter relationship 69.50348004 m~"-1
kelvin-joule relationship 1.380649¢-23 J
kelvin-kilogram relationship 1.536179187e-40 kg
kilogram—-atomic mass unit relationship 6.0221407621e+26 u
kilogram-electron volt relationship 5.609588603e+35 eV
kilogram—hartree relationship 2.0614857887409¢+34 E_h
kilogram-hertz relationship 1.356392489¢+50 Hz
kilogram—inverse meter relationship 4.524438335e+41 mM-1
kilogram-joule relationship 8.987551787368176e+16 1
kilogram-kelvin relationship 6.50965726e+39 K
lattice parameter of silicon 5.431020511e-10 m
lattice spacing of ideal Si (220) 1.920155716e-10 m
continues on next page
364 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Table 13 - continued from previous page

Loschmidt constant (273.15 K, 100 kPa)

2.651645804e+25 m”-3

Loschmidt constant (273.15 K, 101.325 kPa)

2.686780111e+25 m”-3

luminous efficacy

683.0 Im WA-1

mag. flux quantum

2.067833848e-15 Wb

Mo X unit

1.00209952e-13 m

molar gas constant

8.314462618 J mol*-1 KA-1

molar mass constant

0.00099999999965 kg mol”-1

molar mass of carbon-12

0.0119999999958 kg mol*-1

molar Planck constant

3.990312712e-10 J HzA-1 mol”-1

molar volume of ideal gas (273.15 K, 100 kPa)

0.02271095464 m"3 mol~-1

molar volume of ideal gas (273.15 K, 101.325 kPa)

0.02241396954 m"3 mol~-1

molar volume of silicon

1.205883199e-05 m"3 mol*-1

muon Compton wavelength

1.17344411e-14 m

muon g factor -2.0023318418

muon mag. mom. -4.4904483e-26 J TA-1
muon mag. mom. anomaly 0.00116592089
muon mag. mom. to Bohr magneton ratio -0.00484197047
muon mag. mom. to nuclear magneton ratio -8.89059703

muon mass

1.883531627e-28 kg

muon mass energy equivalent

1.692833804e-111J

muon mass energy equivalent in MeV

105.6583755 MeV

muon mass in u

0.1134289259 u

muon molar mass

0.0001134289259 kg mol*-1

muon—electron mass ratio

206.768283

muon—-neutron mass ratio

0.112454517

muon-proton mag. mom. ratio

-3.183345142

muon-proton mass ratio

0.1126095264

muon-tau mass ratio

0.0594635

natural unit of action

1.054571817e-34J s

natural unit of action in eV s

6.582119569¢e-16 eV s

natural unit of energy

8.187105776%¢-14]

natural unit of energy in MeV

0.51099895 MeV

natural unit of length

3.8615926796e-13 m

natural unit of mass

9.1093837015e-31 kg

natural unit of momentum

2.730924488e-22 kg m s”-1

natural unit of momentum in MeV/c

0.5109989461 MeV/c

natural unit of time

1.28808866819¢-21 s

natural unit of velocity

299792458.0 m s”-1

neutron Compton wavelength

1.31959090581e-15 m

neutron g factor

-3.82608545

neutron gyromag. ratio

183247171.0 s*-1 TA-1

neutron gyromag. ratio in MHz/T

29.1646931 MHz TA-1

neutron mag. mom.

-9.6623651e-27 J TA-1

neutron mag. mom. to Bohr magneton ratio

-0.00104187563

neutron mag. mom. to nuclear magneton ratio

-1.91304273

neutron mass

1.67492749804e-27 kg

neutron mass energy equivalent

1.50534976287e-10J

neutron mass energy equivalent in MeV

939.56542052 MeV

neutron mass in u

1.00866491595 u

neutron molar mass

0.0010086649156 kg mol”-1

continues on next page

3.3. API definition

365

SciPy Reference Guide, Release 1.8.0

Table 13 - continued from previous page

neutron relative atomic mass

1.00866491595

neutron to shielded proton mag. mom. ratio -0.68499694
neutron—-electron mag. mom. ratio 0.00104066882
neutron-electron mass ratio 1838.68366173
neutron-muon mass ratio 8.89248406
neutron-proton mag. mom. ratio -0.68497934

neutron-proton mass difference

2.30557435e-30 kg

neutron-proton mass difference energy equivalent

2.07214689%¢-13J

neutron-proton mass difference energy equivalent in MeV

1.29333236 MeV

neutron-proton mass difference in u 0.00138844933 u
neutron-proton mass ratio 1.00137841931
neutron-tau mass ratio 0.528779

Newtonian constant of gravitation

6.6743e-11 m"3 kgh-1 s*-2

Newtonian constant of gravitation over h-bar c

6.70883e-39 (GeV/cr2)N-2

nuclear magneton

5.0507837461e-27 J TA-1

nuclear magneton in eV/T

3.15245125844e-08 eV T"-1

nuclear magneton in inverse meter per tesla

0.0254262341353 m”-1 TA-1

nuclear magneton in K/T

0.00036582677756 K TA-1

nuclear magneton in MHz/T

7.6225932291 MHz TA-1

Planck constant

6.62607015e-34 J Hz"-1

Planck constant in eV/Hz

4.135667696e-15 eV Hz"-1

Planck length

1.616255e-35 m

Planck mass

2.176434e-08 kg

Planck mass energy equivalent in GeV

1.22089¢e+19 GeV

Planck temperature

1.416784e+32 K

Planck time

5.391247e-44 s

proton charge to mass quotient

95788331.56 C kgn-1

proton Compton wavelength

1.32140985539%¢-15 m

proton g factor

5.5856946893

proton gyromag. ratio

267522187.44 sh-1 TA-1

proton gyromag. ratio in MHz/T

42.577478518 MHz T"-1

proton mag. mom.

1.41060679736e-26 J TA-1

proton mag. mom. to Bohr magneton ratio 0.0015210322023
proton mag. mom. to nuclear magneton ratio 2.79284734463
proton mag. shielding correction 2.5689¢-05

proton mass

1.67262192369¢e-27 kg

proton mass energy equivalent

1.50327761598e-10J

proton mass energy equivalent in MeV

938.27208816 MeV

proton mass in u

1.007276466621 u

proton molar mass

0.00100727646627 kg mol”-1

proton relative atomic mass

1.007276466621

proton rms charge radius 8.414e-16 m
proton-electron mass ratio 1836.15267343
proton—-muon mass ratio 8.88024337
proton-neutron mag. mom. ratio -1.45989805
proton-neutron mass ratio 0.99862347812
proton-tau mass ratio 0.528051

quantum of circulation

0.00036369475516 m"2 s*-1

quantum of circulation times 2

0.00072738951032 m"2 s-1

reduced Compton wavelength

3.8615926796e-13 m

continues on next page

366

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Table 13 - continued from previous page

reduced muon Compton wavelength 1.867594306e-15 m
reduced neutron Compton wavelength 2.1001941552e-16 m
reduced Planck constant 1.054571817e-34 1 s
reduced Planck constant in eV s 6.582119569¢-16 eV s
reduced Planck constant times c in MeV fm 197.3269804 MeV fm
reduced proton Compton wavelength 2.10308910336e-16 m
reduced tau Compton wavelength 1.110538e-16 m
Rydberg constant 10973731.56816 m”-1
Rydberg constant times c¢ in Hz 3289841960250800.0 Hz
Rydberg constant times hc in eV 13.605693122994 eV
Rydberg constant times hc in J 2.1798723611035e-18J
Sackur—-Tetrode constant (1 K, 100 kPa) -1.15170753706
Sackur—-Tetrode constant (1 K, 101.325 kPa) -1.16487052358

second radiation constant

0.01438776877 m K

shielded helion gyromag. ratio 203789456.9 s*-1 TA-1
shielded helion gyromag. ratio in MHz/T 32.43409942 MHz TA-1
shielded helion mag. mom. -1.07455309e-26 J TA-1
shielded helion mag. mom. to Bohr magneton ratio -0.001158671471
shielded helion mag. mom. to nuclear magneton ratio -2.127497719
shielded helion to proton mag. mom. ratio -0.7617665618
shielded helion to shielded proton mag. mom. ratio -0.7617861313
shielded proton gyromag. ratio 267515315.1 sh-1 TA-1
shielded proton gyromag. ratio in MHz/T 42.57638474 MHz T"-1
shielded proton mag. mom. 1.41057056e-26 J TA-1
shielded proton mag. mom. to Bohr magneton ratio 0.001520993128
shielded proton mag. mom. to nuclear magneton ratio 2.792775599
shielding difference of d and p in HD 2.02e-08

shielding difference of t and p in HT 2.414e-08

speed of light in vacuum

299792458.0 m s”-1

standard acceleration of gravity 9.80665 m s”-2
standard atmosphere 101325.0 Pa
standard-state pressure 100000.0 Pa

Stefan-Boltzmann constant

5.670374419e-08 W m”-2 K"-4

tau Compton wavelength 6.97771e-16 m

tau energy equivalent 1776.86 MeV

tau mass 3.16754e-27 kg

tau mass energy equivalent 2.84684e-101J

tau mass in u 1.90754 u

tau molar mass 0.00190754 kg mol”-1

tau-electron mass ratio

3477.23

tau-muon mass ratio 16.817

tau-neutron mass ratio 1.89115

tau-proton mass ratio 1.89376

Thomson cross section 6.6524587321e-29 m"2
triton g factor 5.957924931

triton mag. mom. 1.5046095202e-26 J TA-1
triton mag. mom. to Bohr magneton ratio 0.0016223936651
triton mag. mom. to nuclear magneton ratio 2.9789624656

triton mass 5.0073567446e-27 kg
triton mass energy equivalent 4.500387806e-10J

continues on next page

3.3. API definition

367

SciPy Reference Guide, Release 1.8.0

Table 13 - continued from previous page

triton mass energy equivalent in

MeV

2808.92113298 MeV

triton mass in u

3.01550071621 u

triton molar mass

0.00301550071517 kg mol”-1

triton relative atomic mass 3.01550071621
triton to proton mag. mom. ratio 1.0666399191
triton-electron mass ratio 5496.92153573
triton-proton mass ratio 2.99371703414

unified atomic mass unit

1.6605390666e-27 kg

vacuum electric permittivity

8.8541878128e-12 F m~-1

vacuum mag. permeability

1.25663706212e-06 N A*-2

von Klitzing constant 25812.80745 ohm

W to Z mass ratio 0.88153

weak mixing angle 0.2229

Wien frequency displacement law constant 58789257570.0 Hz KA-1
Wien wavelength displacement law constant 0.002897771955 m K

Units

Sl prefixes
yotta | 10%*
zetta | 1077
exa 1018
peta 107
tera 1072
giga 10°
mega 10°
kilo | 10°
hecto | 102
deka 10!
deci 10T
centi | 1072
milli | 1073
micro | 1076
nano 1077
pico 10~ 12
femto | 107 1°
atto 10— 18
zepto | 10721
yocto | 10724

368 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Binary prefixes

Mass

Angle

kibi | 210

mebi | 229

gibi | 230

tebi | 2%

pebi | 20

exbi | 260

zebi | 270

yobi | 280
gram 1073 kg
metric_ton 103 kg
grain one grain in kg
1b one pound (avoirdupous) in kg
pound one pound (avoirdupous) in kg
blob one inch version of a slug in kg (added in 1.0.0)
slinch one inch version of a slug in kg (added in 1.0.0)
slug one slug in kg (added in 1.0.0)
oz one ounce in kg
ounce one ounce in kg
stone one stone in kg
grain one grain in kg
long_ton one long ton in kg

short_ton

one short ton in kg

troy_ounce

one Troy ounce in kg

troy_pound

one Troy pound in kg

carat

one carat in kg

m_u

atomic mass constant (in kg)

u

atomic mass constant (in kg)

atomic_mass

atomic mass constant (in kg)

degree degree in radians

arcmin arc minute in radians
arcminute | arc minute in radians
arcsec arc second in radians
arcsecond | arc second in radians

3.3. API definition

369

SciPy Reference Guide, Release 1.8.0

Time
minute one minute in seconds
hour one hour in seconds
day one day in seconds
week one week in seconds
year one year (365 days) in seconds
Julian_year | one Julian year (365.25 days) in seconds
Length
inch one inch in meters
foot one foot in meters
yard one yard in meters
mile one mile in meters
mil one mil in meters
pt one point in meters
point one point in meters
survey_foot one survey foot in meters
survey_mile one survey mile in meters
nautical _mile one nautical mile in meters
fermi one Fermi in meters
angstrom one Angstrom in meters
micron one micron in meters
au one astronomical unit in meters
astronomical_unit | one astronomical unit in meters
light_year one light year in meters
parsec one parsec in meters
Pressure
atm standard atmosphere in pascals
atmosphere | standard atmosphere in pascals
bar one bar in pascals
torr one torr (mmHg) in pascals
mmHg one torr (mmHg) in pascals
psi one psi in pascals
370 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Area
hectare | one hectare in square meters
acre one acre in square meters
Volume
liter one liter in cubic meters
litre one liter in cubic meters
gallon one gallon (US) in cubic meters
gallon_US one gallon (US) in cubic meters
gallon_imp one gallon (UK) in cubic meters
fluid_ounce one fluid ounce (US) in cubic meters
fluid_ounce_US one fluid ounce (US) in cubic meters
fluid_ounce_imp | one fluid ounce (UK) in cubic meters
bbl one barrel in cubic meters
barrel one barrel in cubic meters
Speed
kmh kilometers per hour in meters per second
mph miles per hour in meters per second
mach one Mach (approx., at 15 C, 1 atm) in meters per second
speed_of_sound | one Mach (approx., at 15 C, 1 atm) in meters per second
knot one knot in meters per second
Temperature
zero_Celsius zero of Celsius scale in Kelvin

degree_Fahrenheit | one Fahrenheit (only differences) in Kelvins

convert_temperature(val, old_scale, new_scale) Convert from a temperature scale to another one among
Celsius, Kelvin, Fahrenheit, and Rankine scales.

scipy.constants.convert_temperature

scipy.constants.convert_temperature (val, old_scale, new_scale)
Convert from a temperature scale to another one among Celsius, Kelvin, Fahrenheit, and Rankine scales.

Parameters

val [array_like] Value(s) of the temperature(s) to be converted expressed in the original scale.
old_scale: str
Specifies as a string the original scale from which the temperature value(s) will be converted.
Supported scales are Celsius (‘Celsius’, ‘celsius’, ‘C’ or ‘c’), Kelvin (‘Kelvin’, ‘kelvin’, ‘K, k),
Fahrenheit (‘Fahrenheit’, ‘fahrenheit’, ‘F’ or ‘f”), and Rankine (‘Rankine’, ‘rankine’, ‘R’, r’).
new_scale: str
Specifies as a string the new scale to which the temperature value(s) will be converted. Sup-
ported scales are Celsius (‘Celsius’, ‘celsius’, ‘C’ or ‘c’), Kelvin (‘Kelvin’, ‘kelvin’, ‘K’, ‘k’),
Fahrenheit (‘Fahrenheit’, ‘fahrenheit’, ‘F’ or ‘f*), and Rankine (‘Rankine’, ‘rankine’, ‘R’, r’).

3.3. API definition 371

SciPy Reference Guide, Release 1.8.0

Returns

res [float or array of floats] Value(s) of the converted temperature(s) expressed in the new scale.

Notes

New in version 0.18.0.

Examples

>>> from scipy.constants import convert_temperature

>>> convert_temperature (np.array([-40, 40]), 'Celsius', 'Kelvin')
array ([233.15, 313.15])
Energy
eV one electron volt in Joules
electron_volt | one electron volt in Joules
calorie one calorie (thermochemical) in Joules
calorie_th one calorie (thermochemical) in Joules
calorie IT one calorie (International Steam Table calorie, 1956) in Joules
erg one erg in Joules
Btu one British thermal unit (International Steam Table) in Joules
Btu_IT one British thermal unit (International Steam Table) in Joules
Btu_th one British thermal unit (thermochemical) in Joules
ton_TNT one ton of TNT in Joules
Power
hp one horsepower in watts
horsepower | one horsepower in watts
Force
dyn one dyne in newtons
dyne one dyne in newtons
1bf one pound force in newtons
pound_force one pound force in newtons
kgf one kilogram force in newtons
kilogram_force | one kilogram force in newtons
372 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Optics
lambdaZnu(lambda_) Convert wavelength to optical frequency
nuZ2lambda(nu) Convert optical frequency to wavelength.

scipy.constants.lambda2nu

scipy.constants.lambda2nu (lambda_)
Convert wavelength to optical frequency

Parameters
lambda_ [array_like] Wavelength(s) to be converted.
Returns

nu [float or array of floats] Equivalent optical frequency.

Notes

Computes nu = c / lambda where ¢ =299792458.0, i.e., the (vacuum) speed of light in meters/second.

Examples

>>> from scipy.constants import lambdaZnu, speed_of_light
>>> lambda2nu (np.array((1, speed_of_light)))
array ([2.99792458e+08, 1.00000000e+007)

scipy.constants.nu2lambda

scipy.constants.nu2lambda (nu)
Convert optical frequency to wavelength.

Parameters
nu [array_like] Optical frequency to be converted.
Returns

lambda [float or array of floats] Equivalent wavelength(s).

Notes

Computes lambda = ¢ / nu where ¢ =299792458.0, i.e., the (vacuum) speed of light in meters/second.

3.3. API definition 373

SciPy Reference Guide, Release 1.8.0

Examples

>>> from scipy.constants import nu2lambda, speed_of_light
>>> nuz2lambda (np.array ((1, speed_of_light)))
array ([2.99792458e+08, 1.00000000e+007)

References
3.3.5 Discrete Fourier transforms (scipy. ££t)

Fast Fourier Transforms (FFTs)

fre(x[, n, axis, norm, overwrite_x, ...]) Compute the 1-D discrete Fourier Transform.

1 fft(x[, n, axis, norm, overwrite_x, ...]) Compute the 1-D inverse discrete Fourier Transform.

frt2(x[, s, axes, norm, overwrite_x, ...]) Compute the 2-D discrete Fourier Transform

1fft2(x[, s, axes, norm, overwrite_x, ...]) Compute the 2-D inverse discrete Fourier Transform.

fren(x[, s, axes, norm, overwrite_x, ...]) Compute the N-D discrete Fourier Transform.

1ffrtn(x[, s, axes, norm, overwrite_x, ...]) Compute the N-D inverse discrete Fourier Transform.

rfrt(x[, n, axis, norm, overwrite_X, ...]) Compute the 1-D discrete Fourier Transform for real in-
put.

1rfft(x[, n, axis, norm, overwrite_x, ...]) Computes the inverse of rfrt.

rfrrt2(x[, s, axes, norm, overwrite_x, ...]) Compute the 2-D FFT of a real array.

1rfrt2(x[, s, axes, norm, overwrite_x, ...]) Computes the inverse of rF£t2

rfrtn(x[, s, axes, norm, overwrite_x, ...]) Compute the N-D discrete Fourier Transform for real in-
put.

1rfrtn(x[, s, axes, norm, overwrite_x, ...]) Computes the inverse of rfftn

hfft(x[, n, axis, norm, overwrite_x, ...]) Compute the FFT of a signal that has Hermitian symme-
try, i.e., areal spectrum.

1hfft(x[, n, axis, norm, overwrite_x, ...]) Compute the inverse FFT of a signal that has Hermitian
symmetry.

hfft2(x[, s, axes, norm, overwrite_x, ...]) Compute the 2-D FFT of a Hermitian complex array.

1hfft2(x[, s, axes, norm, overwrite_x, ...]) Compute the 2-D inverse FFT of a real spectrum.

hfftn(x[, s, axes, norm, overwrite_x, ...]) Compute the N-D FFT of Hermitian symmetric complex
input, i.e., a signal with a real spectrum.

1hfrtn(x[, s, axes, norm, overwrite_x, ...]) Compute the N-D inverse discrete Fourier Transform for

a real spectrum.

scipy.fft.fft

scipy.fft.££t (x, n=None, axis=- 1, norm=None, overwrite_x=False, workers=None, *, plan=None)
Compute the 1-D discrete Fourier Transform.

This function computes the 1-D n-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform
(FFT) algorithm [1].

Parameters

X [array_like] Input array, can be complex.

n [int, optional] Length of the transformed axis of the output. If # is smaller than the length
of the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not
given, the length of the input along the axis specified by axis is used.

axis [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

374 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode. Default is “backward”,
meaning no normalization on the forward transforms and scaling by 1 /n on the i frt. “for-
ward” instead applies the 1/n factor on the forward tranform. For norm="ortho", both
directions are scaled by 1/sqgrt (n).
New in version 1.6.0: norm={"forward", "backward"} options were added

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False. See the notes
below for more details.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See below for more details.

plan [object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.
New in version 1.5.0.

Returns
out [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified.
Raises
IndexError
if axes is larger than the last axis of x.
See also:
ifft

The inverse of £rt.
fft2
The 2-D FFT.
fftn
The N-D FFT.
rfftn
The N-D FFT of real input.
fftfreq
Frequency bins for given FFT parameters.
next_fast_len

Size to pad input to for most efficient transforms

Notes

FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently,
by using symmetries in the calculated terms. The symmetry is highest when 7 is a power of 2, and the transform is
therefore most efficient for these sizes. For poorly factorizable sizes, scipy. £t uses Bluestein’s algorithm [2]
and so is never worse than O(n log n). Further performance improvements may be seen by zero-padding the input
using next_fast_len.

If x is a 1d array, then the £t is equivalent to

y[k] = np.sum(x * np.exp(-2j * np.pi * k * np.arange (n)/n))

3.3. API definition 375

SciPy Reference Guide, Release 1.8.0

The frequency term f=k/n is found at y [k]. At y[n/2] we reach the Nyquist frequency and wrap around to
the negative-frequency terms. So, for an 8-point transform, the frequencies of the result are [0, 1, 2, 3, -4, -3, -2,
-1]. To rearrange the fft output so that the zero-frequency component is centered, like [-4, -3, -2, -1, 0, 1, 2, 3],
use fftshift.

Transforms can be done in single, double, or extended precision (long double) floating point. Half precision inputs
will be converted to single precision and non-floating-point inputs will be converted to double precision.

If the data type of x is real, a “real FFT” algorithm is automatically used, which roughly halves the computation
time. To increase efficiency a little further, use r7£t, which does the same calculation, but only outputs half of
the symmetrical spectrum. If the data are both real and symmetrical, the dct can again double the efficiency, by
generating half of the spectrum from half of the signal.

When overwrite_x=True is specified, the memory referenced by x may be used by the implementation in
any way. This may include reusing the memory for the result, but this is in no way guaranteed. You should not rely
on the contents of x after the transform as this may change in future without warning.

The workers argument specifies the maximum number of parallel jobs to split the FFT computation into. This
will execute independent 1-D FFTs within x. So, x must be at least 2-D and the non-transformed axes must be
large enough to split into chunks. If x is too small, fewer jobs may be used than requested.

References

(11, [2]

Examples

>>> import scipy.fft
>>> scipy.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
array ([-2.33486982e-16+1.14423775e-173, 8.00000000e+00-1.25557246e-157,
2.33486982e-16+2.33486982e-163, 0.00000000e+00+1.22464680e-1673,
-1.14423775e-17+2.33486982e-167j, 0.00000000e+00+5.20784380e-167,
1.14423775e-17+1.14423775e-173, 0.00000000e+00+1.22464680e-1671)

In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in
the imaginary part:

>>> from scipy.fft import fft, fftfreq, fftshift

>>> import matplotlib.pyplot as plt

>>> t = np.arange (256)

>>> sp = fftshift (fft(np.sin(t)))

>>> freq = fftshift (fftfreq(t.shapel[-11))

>>> plt.plot (freq, sp.real, freq, sp.imag)

[<matplotlib.lines.Line2D object at 0Ox...>, <matplotlib.lines.Line2D.
—object at 0Ox...>]

>>> plt.show ()

376 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.fft.ifft

50 A1

_50 4

-0.4 -0.2 0.0 0.2 0.4

scipy.fft.ifft (x, n=None, axis=- 1, norm=None, overwrite_x=False, workers=None, *, plan=None)
Compute the 1-D inverse discrete Fourier Transform.

This function computes the inverse of the 1-D n-point discrete Fourier transform computed by £7t. In other
words, ifft (fft (x)) == x to within numerical accuracy.

The input should be ordered in the same way as is returned by ¢, i.e.,

e x[0] should contain the zero frequency term,

e x[1:n//2] should contain the positive-frequency terms,

e x[n//2 + 1:] should contain the negative-frequency terms, in increasing order starting from the most
negative frequency.

For an even number of input points, x [n/ /2] represents the sum of the values at the positive and negative Nyquist
frequencies, as the two are aliased together. See 1t for details.

Parameters

X
n

axis
norm

[array_like] Input array, can be complex.

[int, optional] Length of the transformed axis of the output. If n is smaller than the length
of the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not
given, the length of the input along the axis specified by axis is used. See notes about padding
issues.

[int, optional] Axis over which to compute the inverse DFT. If not given, the last axis is used.
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see fft). Default is
“backward”.

overwrite_x

workers

plan

[bool, optional] If True, the contents of x can be destroyed; the default is False. See £t for
more details.

[int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

[object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.

New in version 1.5.0.

3.3. API definition

377

SciPy Reference Guide, Release 1.8.0

Returns
out [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified.
Raises
IndexError
If axes is larger than the last axis of x.
See also:

fft

The 1-D (forward) FFT, of which i £t is the inverse.
ifft2

The 2-D inverse FFT.
ifftn

The N-D inverse FFT.

Notes

If the input parameter 7 is larger than the size of the input, the input is padded by appending zeros at the end. Even
though this is the common approach, it might lead to surprising results. If a different padding is desired, it must be
performed before calling i Fft.

If x is a 1-D array, then the i £t is equivalent to

y[k] = np.sum(x * np.exp(2j * np.pi * k * np.arange(n)/n)) / len(x)

As with £ft, i1t has support for all floating point types and is optimized for real input.

Examples

>>> import scipy.fft
>>> scipy.fft.ifft ([0, 4, 0, 0])
array([1.+0.3, 0.+1.3, -1.40.3, 0.-1.3]) # may vary

Create and plot a band-limited signal with random phases:

>>> import matplotlib.pyplot as plt

>>> rng = np.random.default_rng()

>>> t = np.arange (400)

>>> n = np.zeros((400,), dtype=complex)

>>> n[40:60] = np.exp(lj*rng.uniform(0, 2*np.pi, (20,)))
>>> s = scipy.fft.ifft (n)

>>> plt.plot(t, s.real, 'b-', t, s.imag, 'r——")

[<matplotlib.lines.Line2D object at ...>, <matplotlib.lines.Line2D object.
—at ...>]

>>> plt.legend(('real', 'imaginary'))

<matplotlib.legend.Legend object at ...>

>>> plt.show ()

378

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

—0.01 ~

—0.02 A

scipy.fft.fft2

0.02 1
0.01 - ' |

0.00 - l’ TR Wit PR i

— real .
——- imaginary

‘I‘ | il ! 1 "||| L} ;lwl
il HEIAL iyt i |“I'|h'“ ninhail it
1 1

N
[N |I||yl|‘
oy g Lt
f LRI 0 i ! i
|
1! i WERE T I 1

‘]

100 200 300 400

o_

scipy.fft.££t2 (x, s=None, axes=(- 2, - 1), norm=None, overwrite_x=False, workers=None, *, plan=None)
Compute the 2-D discrete Fourier Transform

This function computes the N-D discrete Fourier Transform over any axes in an M-D array by means of the Fast
Fourier Transform (FFT). By default, the transform is computed over the last two axes of the input array, i.e., a

2-dimensional FFT.

Parameters
X [array_like] Input array, can be complex
s [sequence of ints, optional] Shape (length of each transformed axis) of the output (s [0]
refers to axis 0, s [1] to axis 1, etc.). This corresponds to n for £ft (x, n). Alongeach
axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger,
the input is padded with zeros. if s is not given, the shape of the input along the axes specified
by axes is used.
axes [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last two
axes are used.
norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see frt). Default is
“backward”.
overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False. See £ 1t for
more details.
workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.
plan [object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.
New in version 1.5.0.
Returns
out [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or the last two axes if axes is not given.
Raises
ValueError

3.3. API definition

379

SciPy Reference Guide, Release 1.8.0

If s and axes have different length, or axes not given and len (s) != 2.
IndexError
If an element of axes is larger than than the number of axes of x.

See also:

ifft2

The inverse 2-D FFT.
fft

The 1-D FFT.
fftn

The N-D FFT.
fftshift

Shifts zero-frequency terms to the center of the array. For 2-D input, swaps first and third quadrants, and
second and fourth quadrants.

Notes

fft2is just £ftn with a different default for axes.

The output, analogously to £ ft, contains the term for zero frequency in the low-order corner of the transformed
axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of
the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative frequency.

See fftn for details and a plotting example, and £ £t for definitions and conventions used.

Examples
>>> import scipy.fft
>>> x = np.mgrid[:5, :5][0]
>>> scipy.fft.fft2 (x)
array ([[50. +0.j , 0. +0.j , 0. +0.3 , # may.
—vary
0. +0.3 , 0. +0.3 1,
[-12.5+17.204774017, 0. +0.3 , 0 +0.3J P
0. +0.3 , 0. +0.3 1,
[-12.5 +4.06149627 , 0. +0.3 , 0 +0.7 ,
0. +0.3 , 0. +0.3 1,
[-12.5 -4.06149627 , 0. +0.3 , 0 +0.3J ,
0. +0.3 , 0. +0.3 1,
[-12.5-17.204774017, 0. +0.3 , 0 +0.7J P
0. +0.j3 , 0. +0.j3 11)

380 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.fft.ifft2

scipy.fft.ifft2 (x, s=None, axes=(- 2, - 1), norm=None, overwrite_x=False, workers=None, *, plan=None)
Compute the 2-D inverse discrete Fourier Transform.

This function computes the inverse of the 2-D discrete Fourier Transform over any number of axes in an M-D array
by means of the Fast Fourier Transform (FFT). In other words, i fft2 (£ft2 (x)) == x to within numerical
accuracy. By default, the inverse transform is computed over the last two axes of the input array.

The input, analogously to i £ft, should be ordered in the same way as is returned by £7t2, i.e., it should have
the term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half
of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the
second half of both axes, in order of decreasingly negative frequency.

Parameters

[array_like] Input array, can be complex.

s [sequence of ints, optional] Shape (length of each axis) of the output (s [0] refers to axis
0, s[1] toaxis 1, etc.). This corresponds to n for ifft (x, n). Along each axis, if the
given shape is smaller than that of the input, the input is cropped. If it is larger, the input is
padded with zeros. if s is not given, the shape of the input along the axes specified by axes is
used. See notes for issue on i £t zero padding.

axes [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last two
axes are used.

norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see frt). Default is
“backward”.

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False. See £t for
more details.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

plan [object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.
New in version 1.5.0.

Returns
out [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or the last two axes if axes is not given.
Raises
ValueError
If s and axes have different length, or axes not given and len (s) != 2.
IndexError
If an element of axes is larger than than the number of axes of x.
See also:
fft2

The forward 2-D FFT, of which i £t 2 is the inverse.
ifftn

The inverse of the N-D FFT.
fft

The 1-D FFT.

3.3. API definition 381

SciPy Reference Guide, Release 1.8.0

ifft

The 1-D inverse FFT.

Notes

1fft2is just i fftn with a different default for axes.

See i £ftn for details and a plotting example, and £ £t for definition and conventions used.

Zero-padding, analogously with i £ £t, is performed by appending zeros to the input along the specified dimension.
Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired,
it must be performed before i £t 2 is called.

Examples

>>> import scipy.fft
>>> x = 4 * np.eye (4)
>>> scipy.fft.ifft2 (x)

array ([[1.+0.3, 0.40.3, 0.+0.3, 0.40.3], # may vary
[0.+0.9, 0.+0.3, 0.+0.3, 1.+0.371,
[0.+0.9, 0.+0.3, 1.+0.9, 0.+0.31,
[0.40.9, 1.+0.3, 0.+40.3, 0.+0.311)

scipy.fft.fitn

scipy.fft.££ftn (x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *, plan=None)
Compute the N-D discrete Fourier Transform.

This function computes the N-D discrete Fourier Transform over any number of axes in an M-D array by means
of the Fast Fourier Transform (FFT).

Parameters

X
S

axes

norm

[array_like] Input array, can be complex.

[sequence of ints, optional] Shape (length of each transformed axis) of the output (s [0]
refers to axis 0, s [1] to axis 1, etc.). This corresponds to n for £ft (x, n). Along any
axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger,
the input is padded with zeros. if s is not given, the shape of the input along the axes specified
by axes is used.

[sequence of ints, optional] Axes over which to compute the FFT. If not given, the last
len (s) axes are used, or all axes if s is also not specified.

[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see frt). Default is
“backward”.

overwrite_x

workers

plan

Returns

[bool, optional] If True, the contents of x can be destroyed; the default is False. See 1t for
more details.

[int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

[object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.

New in version 1.5.0.

382

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

out [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s and x, as explained in the parameters section above.

Raises

ValueError
If s and axes have different length.
IndexError
If an element of axes is larger than than the number of axes of x.

See also:

ifftn
The inverse of 1t n, the inverse N-D FFT.
fft
The 1-D FFT, with definitions and conventions used.
rfftn
The N-D FFT of real input.
fft2
The 2-D FFT.
fftshift

Shifts zero-frequency terms to centre of array.

Notes
The output, analogously to £ ft, contains the term for zero frequency in the low-order corner of all axes, the positive

frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the
negative frequency terms in the second half of all axes, in order of decreasingly negative frequency.

Examples

>>> import scipy.fft
>>> x = np.mgrid[:3, :3, :3]11[0]
>>> gscipy.fft.fftn(x, axes=(1, 2))

>>> scip ’
array ([[[2.40.3, 2.+40.3, 2.40.73 # may vary
0.+0.3, 0.+40.3, 0.+0.

2.40.
0

.+0.

[[-2.40.9, —-2.+40.9,

0.40.3, 0.+40.9,

array ([[[0.+0.73, 0.+0.73, 0.+0.3]1, # may vary
[0.40.3, 0.40.3, 0.40.31,
[0.40.9, 0.40.3, 0.40.311,
[[9.40.3, 0.40.3, 0.40.491,
[0.40.3, 0.40.3, 0.+0.31,
[0.40.3, 0.40.3, 0.+0.311,
[[18.40.3, 0.40.3, 0.+0.31,
[0.40.3, 0.40.3, 0.40.31,
[0.40.9, 0.40.3, 0.+0.3111)
y.fft.fftn(x, (2, 2) axes=(0, 1))
[
[
[
[

| G P W P W

. API definition 383

SciPy Reference Guide, Release 1.8.0

>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()

>>> [X, Y] =

np.meshgrid(2 * np.pi * np.arange (200) / 12,
.. 2 * np.pl * np.arange (200) / 34)
>>> S = np.sin(X) + np.cos(Y) + rng.uniform(0, 1, X.shape)

>>> FS = scipy.fft.fftn(S)
>>> plt.imshow (np.log (np.abs (scipy.fft.fftshift (FS))**2))
<matplotlib.image.AxesImage object at 0x...>

>>> plt.show()

scipy.fft.ifftn

50

100

150

0 50 100 150

scipy.fft.ifftn (x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *, plan=None)
Compute the N-D inverse discrete Fourier Transform.

This function computes the inverse of the N-D discrete Fourier Transform over any number of axes in an M-D array
by means of the Fast Fourier Transform (FFT). In other words, ifftn (fftn(x)) == x to within numerical

accuracy.

The input, analogously to i £ £'t, should be ordered in the same way as is returned by £ £t n, i.e., it should have the
term for zero frequency in all axes in the low-order corner, the positive frequency terms in the first half of all axes,
the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of
all axes, in order of decreasingly negative frequency.

Parameters

X
S

axes

norm

[array_like] Input array, can be complex.

[sequence of ints, optional] Shape (length of each transformed axis) of the output (s [0]
refers to axis 0, s [1] to axis 1, etc.). This corresponds to n for ifft (x, n). Along
any axis, if the given shape is smaller than that of the input, the input is cropped. If it is
larger, the input is padded with zeros. if s is not given, the shape of the input along the axes
specified by axes is used. See notes for issue on i £ £t zero padding.

[sequence of ints, optional] Axes over which to compute the IFFT. If not given, the last
len (s) axes are used, or all axes if s is also not specified.

[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see £rt). Default is
“backward”.

384

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False. See £t for
more details.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

plan [object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.
New in version 1.5.0.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s or x, as explained in the parameters section above.

Raises

ValueError
If s and axes have different length.
IndexError
If an element of axes is larger than than the number of axes of x.

See also:

fftn
The forward N-D FFT, of which i fftn is the inverse.
ifft
The 1-D inverse FFT.
ifft2
The 2-D inverse FFT.
ifftshift

Undoes fftshift, shifts zero-frequency terms to beginning of array.

Notes
Zero-padding, analogously with i £ £t, is performed by appending zeros to the input along the specified dimension.

Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired,
it must be performed before i £t n is called.

Examples

>>> import scipy.fft
>>> x = np.eye (4)
>>> scipy.fft.ifftn(scipy.fft.fftn(x, axes=(0,)), axes=(1,))
array ([[1.+40.3, 0.40.3, 0.+0.3, 0.40.3], # may vary
.+0.3, 0.40.7
0
1

[0.40.5, 1.40.9, O 1,
[0.+40.9, 0.+0.3, 1.+0.7, .+0.91,
[0.+40.9, 0.+0.9, 0.+0.75, .+0.311)

Create and plot an image with band-limited frequency content:

3.3. API definition 385

SciPy Reference Guide, Release 1.8.0

>>>

import matplotlib.pyplot as plt

>>> rng = np.random.default_rng()

>>> n = np.zeros((200,200), dtype=complex)

>>> n[60:80, 20:40] = np.exp(lj*rng.uniform(0, 2*np.pi, (20, 20)))
>>> im = scipy.fft.ifftn(n).real

>>>

plt.imshow (im)

<matplotlib.image.AxesImage object at Ox...>

>>> plt.show()
0
50
100
150
0 50 100 150
scipy.fft.rfft

scipy.fft.rfft (x, n=None, axis=- 1, norm=None, overwrite_x=False, workers=None, *, plan=None)
Compute the 1-D discrete Fourier Transform for real input.

This function computes the 1-D n-point discrete Fourier Transform (DFT) of a real-valued array by means of an

efficient algorithm called the Fast Fourier Transform (FFT).

Parameters

X [array_like] Input array

n [int, optional] Number of points along transformation axis in the input to use. If # is smaller
than the length of the input, the input is cropped. If it is larger, the input is padded with
zeros. If n is not given, the length of the input along the axis specified by axis is used.

axis [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see £rt). Default is
“backward”.

overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False. See £t for
more details.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

plan [object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.
New in version 1.5.0.

Returns

386

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

out [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified. If # is even, the length of the transformed axis
is (n/2)+1. If nis odd, the length is (n+1) /2.

Raises

IndexError
If axis is larger than the last axis of a.

See also:

irfft
The inverse of rfft.
fft
The 1-D FFT of general (complex) input.
fftn
The N-D FFT.
rfft2
The 2-D FFT of real input.
rfftn
The N-D FFT of real input.

Notes

When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e., the negative frequency
terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency
terms are therefore redundant. This function does not compute the negative frequency terms, and the length of the
transformed axis of the output is therefore n//2 + 1.

When X = rfft (x) and fs is the sampling frequency, X [0] contains the zero-frequency term 0*fs, which is
real due to Hermitian symmetry.

If nis even, A[—-1] contains the term representing both positive and negative Nyquist frequency (+fs/2 and -fs/2),
and must also be purely real. If » is odd, there is no term at fs/2; A[~1] contains the largest positive frequency
(fs/2*(n-1)/n), and is complex in the general case.

If the input a contains an imaginary part, it is silently discarded.

Examples

>>> import scipy.fft

>>> scipy.fft.££t ([0, 1, O, 01)

array ([1.+0.3, 0.-1.3, -1.+40.3, 0.+1.3]1) # may vary
>>> scipy.fft.rfft ([0, 1, 0, 01])

array ([1.+0.3, 0.-1.3, -1.+0.73]) # may vary

Notice how the final element of the 7 £t output is the complex conjugate of the second element, for real input. For
rfft, this symmetry is exploited to compute only the non-negative frequency terms.

3.3. API definition 387

SciPy Reference Guide, Release 1.8.0

scipy.fft.irfft

scipy.fft.irfft (x, n=None, axis=- 1, norm=None, overwrite_x=False, workers=None, *, plan=None)
Computes the inverse of rfft.

This function computes the inverse of the 1-D n-point discrete Fourier Transform of real input computed by rf¢t.
In other words, irfft (rfft (x), len(x)) == x to within numerical accuracy. (See Notes below for why
len (a) is necessary here.)

The input is expected to be in the form returned by r £ £'t, i.e., the real zero-frequency term followed by the complex
positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of real input is
Hermitian-symmetric, the negative frequency terms are taken to be the complex conjugates of the corresponding
positive frequency terms.

Parameters

X
n

axis
norm

overwrite_x

workers

plan

Returns

out

Raises

IndexError

See also:

rfft

[array_like] The input array.

[int, optional] Length of the transformed axis of the output. For n output points, n//2+1
input points are necessary. If the input is longer than this, it is cropped. If it is shorter than
this, it is padded with zeros. If n is not given, it is taken to be 2* (m-1), where m is the
length of the input along the axis specified by axis.

[int, optional] Axis over which to compute the inverse FFT. If not given, the last axis is used.
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see frt). Default is
“backward”.

[bool, optional] If True, the contents of x can be destroyed; the default is False. See £t for
more details.

[int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

[object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.

New in version 1.5.0.

[ndarray] The truncated or zero-padded input, transformed along the axis indicated by axis,
or the last one if axis is not specified. The length of the transformed axis is n, or, if 7 is not
given, 2* (m—1) where m is the length of the transformed axis of the input. To get an odd
number of output points, # must be specified.

If axis is larger than the last axis of x.

The 1-D FFT of real input, of which i rfft is inverse.

fft
The 1-D FFT.

irfft2

The inverse of the 2-D FFT of real input.

irfftn

The inverse of the N-D FFT of real input.

388

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Notes
Returns the real valued n-point inverse discrete Fourier transform of x, where x contains the non-negative frequency
terms of a Hermitian-symmetric sequence. 7 is the length of the result, not the input.

If you specify an n such that @ must be zero-padded or truncated, the extra/removed values will be added/removed
at high frequencies. One can thus resample a series to m points via Fourier interpolation by: a_resamp =
irfft(rfft(a), m).

The default value of n assumes an even output length. By the Hermitian symmetry, the last imaginary component
must be 0 and so is ignored. To avoid losing information, the correct length of the real input must be given.

Examples

>>> import scipy.fft

>>> scipy.fft.ifft([1, -13, -1, 131)

array([0.+0.3, 1.+40.3, 0.+0.3, 0.+0.3]) # may vary
>>> sgscipy.fft.irfft([1, -13, -11)

array ([0., 1., 0., 0.1)

Notice how the last term in the input to the ordinary i £ £t is the complex conjugate of the second term, and the
output has zero imaginary part everywhere. When calling i r £ £ t, the negative frequencies are not specified, and
the output array is purely real.

scipy.fft.rfft2

scipy.fft.r£ft2 (x, s=None, axes=(- 2, - 1), norm=None, overwrite_x=False, workers=None, *, plan=None)

Compute the 2-D FFT of a real array.

Parameters
X [array] Input array, taken to be real.
s [sequence of ints, optional] Shape of the FFT.
axes [sequence of ints, optional] Axes over which to compute the FFT.
norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see frt). Default is

“backward”.

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False. See £ 1t for
more details.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

plan [object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.
New in version 1.5.0.

Returns
out [ndarray] The result of the real 2-D FFT.

See also:

irfft2

The inverse of the 2-D FFT of real input.
rfft

The 1-D FFT of real input.

3.3. API definition 389

SciPy Reference Guide, Release 1.8.0

rfftn

Compute the N-D discrete Fourier Transform for real input.

Notes

This is really just £t n with different default behavior. For more details see rfftn.

scipy.fft.irfft2

scipy.fft.irfft2 (x, s=None, axes=(- 2, - 1), norm=None, overwrite_x=False, workers=None, *, plan=None)
Computes the inverse of rfrt2

Parameters

X
S
axes

norm

[array_like] The input array

[sequence of ints, optional] Shape of the real output to the inverse FFT.

[sequence of ints, optional] The axes over which to compute the inverse fft. Default is the
last two axes.

[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see fft). Default is
“backward”.

overwrite_x

workers

plan

Returns

See also:

rfft2

out

[bool, optional] If True, the contents of x can be destroyed; the default is False. See £t for
more details.

[int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £ £t for more details.

[object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.

New in version 1.5.0.

[ndarray] The result of the inverse real 2-D FFT.

The 2-D FFT of real input.

irfft

The inverse of the 1-D FFT of real input.

irfftn

The inverse of the N-D FFT of real input.

Notes

This is really i r £ £t n with different defaults. For more details see i r£ftn.

390

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.fft.rfftn

scipy.fft.rfftn (x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *, plan=None)
Compute the N-D discrete Fourier Transform for real input.

This function computes the N-D discrete Fourier Transform over any number of axes in an M-D real array by means
of the Fast Fourier Transform (FFT). By default, all axes are transformed, with the real transform performed over
the last axis, while the remaining transforms are complex.

Parameters

X
S

axes

norm

[array_like] Input array, taken to be real.

[sequence of ints, optional] Shape (length along each transformed axis) to use from the input.
(s[0] refers to axis 0, s [1] to axis 1, etc.). The final element of s corresponds to n for
rfft (x, n), while for the remaining axes, it corresponds to n for £ft (x, n). Along
any axis, if the given shape is smaller than that of the input, the input is cropped. If it is
larger, the input is padded with zeros. if s is not given, the shape of the input along the axes
specified by axes is used.

[sequence of ints, optional] Axes over which to compute the FFT. If not given, the last
len (s) axes are used, or all axes if s is also not specified.

[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see fft). Default is
“backward”.

overwrite_x

workers

plan

Returns

out

Raises

ValueError

IndexError

See also:

irfftn

[bool, optional] If True, the contents of x can be destroyed; the default is False. See £t for
more details.

[int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

[object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.

New in version 1.5.0.

[complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s and x, as explained in the parameters section above. The
length of the last axis transformed will be s [-1] //2+1, while the remaining transformed
axes will have lengths according to s, or unchanged from the input.

If s and axes have different length.

If an element of axes is larger than than the number of axes of x.

The inverse of rfftn,i.e., the inverse of the N-D FFT of real input.

fft

The 1-D FFT, with definitions and conventions used.

rfft

The 1-D FFT of real input.

fftn
The N-D FFT.

3.3. API definition

391

SciPy Reference Guide, Release 1.8.0

rfft2
The 2-D FFT of real input.

Notes

The transform for real input is performed over the last transformation axis, as by rfrt, then the transform over
the remaining axes is performed as by £ ftn. The order of the output is as for £t for the final transformation
axis, and as for £1tn for the remaining transformation axes.

See £t for details, definitions and conventions used.

Examples

>>> import scipy.fft
>>> x = np.ones((2, 2, 2))
>>> scipy.fft.rfftn(x)

array ([[[8.+0.3, 0.4+0.3], # may vary
[0.40.3, 0.+0.311,
[[0.40.5, 0.+0.31,
[0.+0.7, 0.+0.3111)

>>> scipy.fft.rfftn(x, axes=(2, 0))
array ([[[4.+0.7, 0.+0.3]1, # may vary

[4.4+0.3, 0.40.3117,
[[0.40.3, 0.40.371,
[0.40.3, 0.40.3111)

scipy.fft.irfftn

scipy.fft.irfftn (x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *, plan=None)
Computes the inverse of r£ftn

This function computes the inverse of the N-D discrete Fourier Transform for real input over any number of axes
in an M-D array by means of the Fast Fourier Transform (FFT). In other words, irfftn (rfftn(x), x.
shape) == x to within numerical accuracy. (The a . shape is necessary like 1en (a) is for i rfrt, and for
the same reason.)

The input should be ordered in the same way as is returned by r £ £t n, i.e., as for i » £ £t for the final transformation
axis, and as for i £ £t n along all the other axes.

Parameters

X [array_like] Input array.

S [sequence of ints, optional] Shape (length of each transformed axis) of the output (s [0]
refers to axis 0, s [1] to axis 1, etc.). s is also the number of input points used along this
axis, except for the last axis, where s [-1] //2+1 points of the input are used. Along any
axis, if the shape indicated by s is smaller than that of the input, the input is cropped. If it is
larger, the input is padded with zeros. If s is not given, the shape of the input along the axes
specified by axes is used. Except for the last axis which is taken to be 2* (m-1), where m
is the length of the input along that axis.

axes [sequence of ints, optional] Axes over which to compute the inverse FFT. If not given, the
last len(s) axes are used, or all axes if s is also not specified.

norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see rrt). Default is
“backward”.

392 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

overwrite_x

workers

plan

Returns

out

Raises

ValueError

IndexError

See also:

rfftn

[bool, optional] If True, the contents of x can be destroyed; the default is False. See £t for
more details.

[int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

[object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.

New in version 1.5.0.

[ndarray] The truncated or zero-padded input, transformed along the axes indicated by axes,
or by a combination of s or x, as explained in the parameters section above. The length of
each transformed axis is as given by the corresponding element of s, or the length of the input
in every axis except for the last one if s is not given. In the final transformed axis the length
of the output when s is not given is 2 * (m—1) , where m is the length of the final transformed
axis of the input. To get an odd number of output points in the final axis, s must be specified.

If s and axes have different length.

If an element of axes is larger than than the number of axes of x.

The forward N-D FFT of real input, of which i £t n is the inverse.

fft

The 1-D FFT, with definitions and conventions used.

irfft

The inverse of the 1-D FFT of real input.

irfft2

The inverse of the 2-D FFT of real input.

Notes

See rrt for definitions and conventions used.

See rf 1t for definitions and conventions used for real input.

The default value of s assumes an even output length in the final transformation axis. When performing the final
complex to real transformation, the Hermitian symmetry requires that the last imaginary component along that axis
must be 0 and so it is ignored. To avoid losing information, the correct length of the real input must be given.

3.3. API definition

393

SciPy Reference Guide, Release 1.8.0

Examples

4

>>> import scipy.fft

>>> x = np.zeros((3, 2, 2))
>>> x[0, O,
>>> scipy.fft.irfftn(x)
array ([[[1.

=3 * 2 * 2

1.1,
1,

PR

]

J/
<11y

]

]

1)

scipy.fft.hfft

scipy.fft.hfft (x, n=None, axis=- 1, norm=None, overwrite_x=False, workers=None, *, plan=None)
Compute the FFT of a signal that has Hermitian symmetry, i.e., a real spectrum.

Parameters

X
n

axis
norm

[array_like] The input array.

[int, optional] Length of the transformed axis of the output. For n output points, n//2 +
1 input points are necessary. If the input is longer than this, it is cropped. If it is shorter
than this, it is padded with zeros. If n is not given, it is taken to be 2* (m—1), where m is
the length of the input along the axis specified by axis.

[int, optional] Axis over which to compute the FFT. If not given, the last axis is used.
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see fft). Default is
“backward”.

overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False. See £t for
more details.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.
plan [object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.
New in version 1.5.0.
Returns
out [ndarray] The truncated or zero-padded input, transformed along the axis indicated by axis,
or the last one if axis is not specified. The length of the transformed axis is #n, or, if n is not
given, 2*m — 2, where m is the length of the transformed axis of the input. To get an odd
number of output points, n must be specified, for instance, as 2*m - 1 in the typical case,
Raises
IndexError
If axis is larger than the last axis of a.
See also:

rfft

Compute the 1-D FFT for real input.

ihfft

The inverse of hfrt.

394

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

hfftn

Compute the N-D FFT of a Hermitian signal.

Notes

hfft/ihfft are a pair analogous to rfrt/irfft, but for the opposite case: here the signal has Hermitian
symmetry in the time domain and is real in the frequency domain. So, here, it’s hf £t, for which you must supply

the length of the result if it is to be odd. * even: 1hfft (hfft (a, 2*len(a) - 2) == a, within roundoff
error, * odd: ihfft (hfft (a, 2*len(a) - 1) == a, within roundoff error.
Examples

>>> a

>>> from scipy.fft import fft, hfft

= 2 * np.pi * np.arange(10) / 10

>>> signal = np.cos(a) + 3j * np.sin(3 * a)
>>> fft(signal) .round (10)
array ([-0.+0.7, 5.+0.3, -0.+0.3, 15.-0.7, 0.+0.7, 0.+0.7,

-0.40.9, -15.-0.5, 0.+40.3, 5.40.91)

>>> hfft (signal[:6]).round(10) # Input first half of signal
array ([0., 5., 0., 15., -0., 0., 0., -15., -0., 5.7)
>>> hfft (signal, 10) # Input entire signal and truncate

array ([0., 5., 0., 15., -0., 0., 0., -15., -0., 5.1)

scipy.fft.ihfft

scipy.fft.ihfft (x, n=None, axis=- I, norm=None, overwrite_x=False, workers=None, *, plan=None)
Compute the inverse FFT of a signal that has Hermitian symmetry.

Parameters

X [array_like] Input array.

n [int, optional] Length of the inverse FFT, the number of points along transformation axis in
the input to use. If n is smaller than the length of the input, the input is cropped. If it is
larger, the input is padded with zeros. If n is not given, the length of the input along the axis
specified by axis is used.

axis [int, optional] Axis over which to compute the inverse FFT. If not given, the last axis is used.

norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see frt). Default is
“backward”.

overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False. See £t for
more details.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

plan [object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.
New in version 1.5.0.

Returns
out [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by auxis, or the last one if axis is not specified. The length of the transformed axis is n/ /2
+ 1.
See also:

3.3. API definition 395

SciPy Reference Guide, Release 1.8.0

hfft, irfft

Notes

hfft/ihfft are a pair analogous to rfft/irfft, but for the opposite case: here, the signal has Hermitian
symmetry in the time domain and is real in the frequency domain. So, here, it’s h £ ft, for which you must supply

the length of the result if it is to be odd: * even: ihfft (hfft (a, 2*len(a) - 2) == a, within roundoff
error, * odd: 1hfft (hfft(a, 2*len(a) - 1) == a, within roundoff error.
Examples

>>> from scipy.fft import ifft, ihfft

>>> spectrum = np.array([15, -4, 0, -1, 0, —41)

>>> ifft (spectrum)

array([1.+0.3, 2.+0.3, 3.+0.3, 4.+0.3, 3.+0.3, 2.+0.73]) # may vary
>>> ihfft (spectrum)

array ([1.-0.3, 2.-0.3, 3.-0.3, 4.-0.3]) # may vary

scipy.fft.hfft2

scipy.fft.hfft2 (x, s=None, axes=(- 2, - 1), norm=None, overwrite_x=False, workers=None, *, plan=None)
Compute the 2-D FFT of a Hermitian complex array.

Parameters
X [array] Input array, taken to be Hermitian complex.
S [sequence of ints, optional] Shape of the real output.
axes [sequence of ints, optional] Axes over which to compute the FFT.
norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see frt). Default is
“backward”.

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False. See £t for
more details.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

plan [object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.
New in version 1.5.0.

Returns
out [ndarray] The real result of the 2-D Hermitian complex real FFT.

See also:

hfftn

Compute the N-D discrete Fourier Transform for Hermitian complex input.

396 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Notes

This is really just hfftn with different default behavior. For more details see h £ £t n.

scipy.fft.ihfft2

scipy.fft.ih££ft2 (x, s=None, axes=(- 2, - 1), norm=None, overwrite_x=False, workers=None, *, plan=None)
Compute the 2-D inverse FFT of a real spectrum.

Parameters
X [array_like] The input array
s [sequence of ints, optional] Shape of the real input to the inverse FFT.
axes [sequence of ints, optional] The axes over which to compute the inverse fft. Default is the
last two axes.
norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see £rt). Default is
“backward”.

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False. See £t for
more details.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

plan [object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.
New in version 1.5.0.

Returns
out [ndarray] The result of the inverse real 2-D FFT.

See also:

ihfftn

Compute the inverse of the N-D FFT of Hermitian input.

Notes

This is really i hfftn with different defaults. For more details see i hf ftn.

scipy.fft.hfftn

scipy.fft.hfftn (x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *, plan=None)
Compute the N-D FFT of Hermitian symmetric complex input, i.e., a signal with a real spectrum.

This function computes the N-D discrete Fourier Transform for a Hermitian symmetric complex input over
any number of axes in an M-D array by means of the Fast Fourier Transform (FFT). In other words,

ihfftn (hfftn(x, s)) == x to within numerical accuracy. (s here is x.shape with s[-1] = x.
shape[-1] * 2 - 1, thisis necessary for the same reason x . shape would be necessary for i r££t.)
Parameters
X [array_like] Input array.
S [sequence of ints, optional] Shape (length of each transformed axis) of the output (s [0]

refers to axis 0, s [1] to axis 1, etc.). s is also the number of input points used along this
axis, except for the last axis, where s [-1]//2+1 points of the input are used. Along any
axis, if the shape indicated by s is smaller than that of the input, the input is cropped. If it is
larger, the input is padded with zeros. If s is not given, the shape of the input along the axes

3.3. API definition 397

SciPy Reference Guide, Release 1.8.0

specified by axes is used. Except for the last axis which is taken to be 2* (m—1) where m is
the length of the input along that axis.

axes [sequence of ints, optional] Axes over which to compute the inverse FFT. If not given, the
last len(s) axes are used, or all axes if s is also not specified.

norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see £rt). Default is
“backward”.

overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False. See £t for
more details.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the

value wraps around from os . cpu_count (). See £t for more details.

plan [object, optional] This argument is reserved for passing in a precomputed plan provided by

downstream FFT vendors. It is currently not used in SciPy.
New in version 1.5.0.

Returns
out [ndarray] The truncated or zero-padded input, transformed along the axes indicated by axes,
or by a combination of s or x, as explained in the parameters section above. The length of
each transformed axis is as given by the corresponding element of s, or the length of the input
in every axis except for the last one if s is not given. In the final transformed axis the length
of the output when s is not given is 2* (m—1) where m is the length of the final transformed
axis of the input. To get an odd number of output points in the final axis, s must be specified.
Raises
ValueError
If s and axes have different length.
IndexError
If an element of axes is larger than than the number of axes of x.
See also:
ihfftn

The inverse N-D FFT with real spectrum. Inverse of hf ftn.
fft

The 1-D FFT, with definitions and conventions used.
rfft

Forward FFT of real input.

Notes

For a 1-D signal x to have a real spectrum, it must satisfy the Hermitian property:

x[1i] == np.conj(x[-1]) for all i

This generalizes into higher dimensions by reflecting over each axis in turn:

x[i, j, k, ...] == np.conj(x[-1i, -3, -k, ...]) for all i, 3, k,

This should not be confused with a Hermitian matrix, for which the transpose is its own conjugate:

x[i, j] == np.conj(x[j, 1i]) for all i, j

398

Chapter 3

. SciPy API

SciPy Reference Guide, Release 1.8.0

The default value of s assumes an even output length in the final transformation axis. When performing the final
complex to real transformation, the Hermitian symmetry requires that the last imaginary component along that axis
must be 0 and so it is ignored. To avoid losing information, the correct length of the real input must be given.

Examples

array ([[[12.
0.

[

[

o O O O

[
[
[
(
[

>>> import scipy.fft
>>> x = np.ones ((3, 2, 2))
>>> scipy.fft.hfftn(x)

0.1,
1,

O O O O o

]

]I
<11y

]

]

11)

scipy.fft.ihfftn

scipy.fft.ihfftn (x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *, plan=None)
Compute the N-D inverse discrete Fourier Transform for a real spectrum.

This function computes the N-D inverse discrete Fourier Transform over any number of axes in an M-D real
array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed, with the real transform
performed over the last axis, while the remaining transforms are complex.

Parameters

X
S

axes

norm

[array_like] Input array, taken to be real.

[sequence of ints, optional] Shape (length along each transformed axis) to use from the input.
(s [0] refers to axis 0, s [1] to axis 1, etc.). Along any axis, if the given shape is smaller
than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if
s is not given, the shape of the input along the axes specified by axes is used.

[sequence of ints, optional] Axes over which to compute the FFT. If not given, the last
len (s) axes are used, or all axes if s is also not specified.

[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see £ft). Default is
“backward”.

overwrite_x

workers

plan

Returns

out

Raises

ValueError

[bool, optional] If True, the contents of x can be destroyed; the default is False. See £t for
more details.

[int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

[object, optional] This argument is reserved for passing in a precomputed plan provided by
downstream FFT vendors. It is currently not used in SciPy.

New in version 1.5.0.

[complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s and x, as explained in the parameters section above. The
length of the last axis transformed will be s [-1] //2+1, while the remaining transformed
axes will have lengths according to s, or unchanged from the input.

If s and axes have different length.

3.3. API definition

399

SciPy Reference Guide, Release 1.8.0

IndexError
If an element of axes is larger than than the number of axes of x.

See also:

hfftn
The forward N-D FFT of Hermitian input.
hfft
The 1-D FFT of Hermitian input.
fft
The 1-D FFT, with definitions and conventions used.
fftn
The N-D FFT.
hfft2
The 2-D FFT of Hermitian input.

Notes
The transform for real input is performed over the last transformation axis, as by i hf ft, then the transform over

the remaining axes is performed as by 1 £t n. The order of the output is the positive part of the Hermitian output
signal, in the same format as r £ ft.

Examples
>>> import scipy.fft
>>> x = np.ones((2, 2, 2))
>>> gcipy.fft.ihfftn (x)
array ([[[1.+0.3, 0.40.3], # may vary
[(0.+0.3, 0.40.711,
[[0.+0.3, O0.+0.731,
[0.+0.3, 0.40.3111)
>>> gscipy.fft.ihfftn(x, axes=(2, 0))
array ([[[1.+0.3, 0.40.3], # may vary
[1.+0.3, 0.+0.311,
[[0.+0.3, 0.+0.71,
[0.+0.3, 0.40.3111)

Discrete Sin and Cosine Transforms (DST and DCT)

Return the Discrete Cosine Transform of arbitrary type
sequence X.

Return the Inverse Discrete Cosine Transform of an ar-
bitrary type sequence.

Return multidimensional Discrete Cosine Transform
along the specified axes.

dct(x[, type, n, axis, norm, overwrite_x, ...])

1idct(x[, type, n, axis, norm, overwrite_x, ...])

dctn(x[, type, s, axes, norm, overwrite_x, ...])

continues on next page

400 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Table 17 - continued from previous page

idctn(x[, type, s, axes, norm, overwrite_x, ...]) Return multidimensional Inverse Discrete Cosine Trans-
form along the specified axes.

dst(x[, type, n, axis, norm, overwrite_x, ...]) Return the Discrete Sine Transform of arbitrary type se-
quence X.

1dst(x[, type, n, axis, norm, overwrite_x, ...]) Return the Inverse Discrete Sine Transform of an arbi-
trary type sequence.

dstn(x[, type, s, axes, norm, overwrite_x, ...]) Return multidimensional Discrete Sine Transform along
the specified axes.

1dstn(x[, type, s, axes, norm, overwrite_x, ...]) Return multidimensional Inverse Discrete Sine Trans-

form along the specified axes.

scipy.fft.dct

scipy.fft.dect (x, type=2, n=None, axis=- 1, norm=None, overwrite_x=False, workers=None,
orthogonalize=None)
Return the Discrete Cosine Transform of arbitrary type sequence x.

Parameters

X [array_like] The input array.

type [{1, 2, 3, 4}, optional] Type of the DCT (see Notes). Default type is 2.

n [int, optional] Length of the transform. If n < x.shape[axis], xis truncated. If n >
x.shape [axis], x is zero-padded. The default resultsinn = x.shape[axis].

axis [int, optional] Axis along which the dct is computed; the default is over the last axis (i.e.,
axis=-1).

norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see Notes). Default is
“backward”.

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

orthogonalize
[bool, optional] Whether to use the orthogonalized DCT variant (see Notes). Defaults to
True when norm=="ortho" and False otherwise.

New in version 1.8.0.
Returns
y [ndarray of real] The transformed input array.

See also:

idct
Inverse DCT

3.3. API definition 401

SciPy Reference Guide, Release 1.8.0

Notes

For a single dimension array x, dct (x, norm='ortho') isequal to MATLAB dct (x).

Warning: For type in {1, 2, 3},norm="ortho" breaks the direct correspondence with the direct
Fourier transform. To recover it you must specify orthogonalize=False.

For norm="ortho" both the dct and idct are scaled by the same overall factor in both directions. By default,
the transform is also orthogonalized which for types 1, 2 and 3 means the transform definition is modified to give
orthogonality of the DCT matrix (see below).

For norm="backward", there is no scaling on dct and the idct is scaled by 1/N where N is the “logical”
size of the DCT. For norm="forward" the 1 /N normalization is applied to the forward dct instead and the
idct is unnormalized.

There are, theoretically, 8 types of the DCT, only the first 4 types are implemented in SciPy."”The’ DCT generally
refers to DCT type 2, and ‘the’ Inverse DCT generally refers to DCT type 3.

Type I
There are several definitions of the DCT-I; we use the following (for norm="backward")

2 wkn
yr =20+ (—1)*zy_y +2ancos< >
n=1

N -1

If orthogonalize=True, x[0] and x [N-1] are multiplied by a scaling factor of V2, and v [0] and
v [N-1] are divided by v/2. When combined with norm="ortho™", this makes the corresponding matrix of
coefficients orthonormal (O @ O.T = np.eye (N)).

Note: The DCT-I is only supported for input size > 1.

Type 11

There are several definitions of the DCT-II; we use the following (for norm="backward")

N-1
wk(2n + 1)
=92 n _
Yk 370 Ty, COS (5N)

If orthogonalize=True, y[0] is divided by /2 which, when combined with norm="ortho", makes the
corresponding matrix of coefficients orthonormal (O @ O.T = np.eye (N)).

Type I1I
There are several definitions, we use the following (for norm="backward")
N-1
w(2k + 1)n
= 2 n _—
Y = To + Zm cos(ON)

n=1
If orthogonalize=True, x [0] terms are multiplied by v/2 which, when combined with norm="ortho™",
makes the corresponding matrix of coefficients orthonormal (O @ O.T = np.eye (N)).

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor 2N. The orthonormalized
DCT-III is exactly the inverse of the orthonormalized DCT-II.

Type IV

402

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

There are several definitions of the DCT-IV; we use the following (for norm="backward")

N-1
m(2k+1)(2n + 1))
Yp = 2 Z T, COS <
n=0

4N

orthogonalize has no effect here, as the DCT-IV matrix is already orthogonal up to a scale factor of 2N.

References

(11, [2]

Examples

The Type 1 DCT is equivalent to the FFT (though faster) for real, even-symmetrical inputs. The output is also real
and even-symmetrical. Half of the FFT input is used to generate half of the FFT output:

>>> from scipy.fft import fft, dct

>>> fft (np.array([4., 3., 5., 10., 5., 3.1)) .real
array ([30., -8., 6., —2., 6., —8.1)

>>> dct (np.array([4., 3., 5., 10.]1), 1)

array ([30., -8., 6., -2.1)

scipy.fft.idct

scipy.fft.idet (x, type=2, n=None, axis=- 1, norm=None, overwrite_x=False, workers=None,

orthogonalize=None)
Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.

Parameters

X [array_like] The input array.

type [{1, 2, 3, 4}, optional] Type of the DCT (see Notes). Default type is 2.

n [int, optional] Length of the transform. If n < x.shape[axis], xis truncated. If n >
x.shape [axis], xis zero-padded. The default resultsinn = x.shape[axis].

axis [int, optional] Axis along which the idct is computed; the default is over the last axis (i.e.,
axis=-1).

norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see Notes). Default is
“backward”.

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

orthogonalize
[bool, optional] Whether to use the orthogonalized IDCT variant (see Notes). Defaults to
True when norm=="ortho" and False otherwise.
New in version 1.8.0.

Returns
idct [ndarray of real] The transformed input array.

See also:

dct
Forward DCT

3.3.

API definition 403

SciPy Reference Guide, Release 1.8.0

Notes

For a single dimension array x, idct (x, norm='ortho') isequal to MATLAB idct (x).

Warning: Fortype in {1, 2, 3},norm="ortho" breaks the direct correspondence with the inverse
direct Fourier transform. To recover it you must specify orthogonalize=False.

For norm="ortho" both the dct and idct are scaled by the same overall factor in both directions. By default,
the transform is also orthogonalized which for types 1, 2 and 3 means the transform definition is modified to give
orthogonality of the IDCT matrix (see dct for the full definitions).

‘The’ IDCT is the IDCT-II, which is the same as the normalized DCT-III.

The IDCT is equivalent to a normal DCT except for the normalization and type. DCT type 1 and 4 are their own
inverse and DCTs 2 and 3 are each other’s inverses.

Examples

The Type 1 DCT is equivalent to the DFT for real, even-symmetrical inputs. The output is also real and even-
symmetrical. Half of the IFFT input is used to generate half of the IFFT output:

>>> from scipy.fft import ifft, idct

>>> ifft(np.array([30., -8., 6., -2., 6., -8.1)) .real
array ([4., 3., 5., 10., 5., 3.1)

>>> idct (np.array ([30., -8., 6., -2.1), 1)

array ([4., 3., 5., 10.17)

scipy.fft.dctn

scipy.fft.detn (x, type=2, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *,

orthogonalize=None)
Return multidimensional Discrete Cosine Transform along the specified axes.

Parameters

X [array_like] The input array.

type [{1, 2,3, 4}, optional] Type of the DCT (see Notes). Default type is 2.

S [int or array_like of ints or None, optional] The shape of the result. If both s and axes
(see below) are None, s is x . shape; if s is None but axes is not None, then s is numpy .
take (x.shape, axes, axis=0).Ifs[i] > x.shape[i], the ith dimension
is padded with zeros. If s[1] < x.shape[1i], the ith dimension is truncated to length
s [1i]. If any element of s is -1, the size of the corresponding dimension of x is used.

axes [int or array_like of ints or None, optional] Axes over which the DCT is computed. If not
given, the last 1en (s) axes are used, or all axes if s is also not specified.

norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see Notes). Default is
“backward”.

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

orthogonalize
[bool, optional] Whether to use the orthogonalized DCT variant (see Notes). Defaults to
True when norm=="ortho" and False otherwise.
New in version 1.8.0.

404

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Returns

y

See also:

idectn

[ndarray of real] The transformed input array.

Inverse multidimensional DCT

Notes

For full details of the DCT types and normalization modes, as well as references, see dct.

Examples

True

>>> from scipy.fft import dctn, idctn
>>> rng = np.random.default_rng()

>>> y = rng.standard_normal ((16, 16))
>>> np.allclose(y, idctn(dctn(y)))

scipy.fft.idctn

scipy.fft.idetn (x, type=2, s=None, axes=None, norm=None, overwrite_x=False, workers=None,

orthogonalize=None)

Return multidimensional Inverse Discrete Cosine Transform along the specified axes.

Parameters

X

type
S

axes

norm

overwrite_x

[array_like] The input array.

[{1, 2,3, 4}, optional] Type of the DCT (see Notes). Default type is 2.

[int or array_like of ints or None, optional] The shape of the result. If both s and axes
(see below) are None, s is x . shape; if s is None but axes is not None, then s is numpy .
take (x.shape, axes, axis=0).Ifs[i] > x.shape[i], the ith dimension
is padded with zeros. If s[1] < x.shape[i], the ith dimension is truncated to length
s [1i]. If any element of s is -1, the size of the corresponding dimension of x is used.

[int or array_like of ints or None, optional] Axes over which the IDCT is computed. If not
given, the last 1en (s) axes are used, or all axes if s is also not specified.

[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see Notes). Default is
“backward”.

[bool, optional] If True, the contents of x can be destroyed; the default is False.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

orthogonalize
[bool, optional] Whether to use the orthogonalized IDCT variant (see Notes). Defaults to
True when norm=="ortho" and False otherwise.
New in version 1.8.0.

Returns
y [ndarray of real] The transformed input array.
See also:

3.3. API definition

405

SciPy Reference Guide, Release 1.8.0

dctn

multidimensional DCT

Notes

For full details of the IDCT types and normalization modes, as well as references, see idct.

Examples

True

>>> from scipy.fft import dctn, idctn
>>> rng = np.random.default_rng()
>>> y = rng.standard_normal ((16, 16))
>>> np.allclose(y, idctn(dctn(y)))

scipy.fft.dst

scipy.fft.dst (x, type=2, n=None, axis=- 1, norm=None, overwrite_x=False, workers=None,
orthogonalize=None)
Return the Discrete Sine Transform of arbitrary type sequence X.

Parameters

X
type
n

axis

norm

overwrite_x

[array_like] The input array.

[{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.

[int, optional] Length of the transform. If n < x.shape[axis], xis truncated. If n >
x.shape [axis], xis zero-padded. The default resultsinn = x.shape[axis].
[int, optional] Axis along which the dst is computed; the default is over the last axis (i.e.,
axis=-1).

[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see Notes). Default is
“backward”.

[bool, optional] If True, the contents of x can be destroyed; the default is False.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.
orthogonalize
[bool, optional] Whether to use the orthogonalized DST variant (see Notes). Defaults to
True when norm=="ortho" and False otherwise.
New in version 1.8.0.
Returns
dst [ndarray of reals] The transformed input array.
See also:
idst
Inverse DST

406

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Notes

Warning: For type in {2, 3}, norm="ortho" breaks the direct correspondence with the direct
Fourier transform. To recover it you must specify orthogonalize=False.

For norm="ortho" both the dst and idst are scaled by the same overall factor in both directions. By default,
the transform is also orthogonalized which for types 2 and 3 means the transform definition is modified to give
orthogonality of the DST matrix (see below).

For norm="backward", there is no scaling on the dst and the i dst is scaled by 1 /N where N is the “logical”
size of the DST.

There are, theoretically, 8 types of the DST for different combinations of even/odd boundary conditions and bound-
ary off sets [1], only the first 4 types are implemented in SciPy.

Type 1
There are several definitions of the DST-I; we use the following for norm="backward". DST-I assumes the
input is odd around n = —1land n = N.
N—1
. (m(k+1)(n+1)
Yp = 2r§xnsm <N+1

Note that the DST-I is only supported for input size > 1. The (unnormalized) DST-I is its own inverse, up to a
factor 2(N + 1). The orthonormalized DST-I is exactly its own inverse.

orthogonalize has no effect here, as the DST-I matrix is already orthogonal up to a scale factor of 2N.
Type 11

There are several definitions of the DST-II; we use the following for norm="backward". DST-II assumes the
input is odd around n = —1/2 and n = N — 1/2; the output is odd around k¥ = —1 and even around k = N — 1

= /ak+D@n+1
yk:22xnsm((2)]5[)>

n=0
If orthogonalize=True, y[0] is divided v/2 which, when combined with norm="ortho", makes the
corresponding matrix of coefficients orthonormal (O @ O.T = np.eye (N)).
Type 111

There are several definitions of the DST-III, we use the following (for norm="backward"). DST-III assumes
the input is odd around n = —1 and even around n = N — 1

N-—-2
v = (—D)*zny_1+2) a,sin (”(% +21A)[(n + 1))

n=0

If orthogonalize=True, x[0] is multiplied by v/2 which, when combined with norm="ortho", makes
the corresponding matrix of coefficients orthonormal (O @ O.T = np.eye (N)).

The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up to a factor 2N. The orthonormalized
DST-III is exactly the inverse of the orthonormalized DST-II.

Type IV
There are several definitions of the DST-IV, we use the following (for norm="backward"). DST-IV assumes
the input is odd around n = —0.5 and even around n = N — 0.5
N-1
. (T2 +1)(2n+1)
=2 n S
w=2 3 s (e

3.3. API definition 407

SciPy Reference Guide, Release 1.8.0

orthogonalize has no effect here, as the DST-IV matrix is already orthogonal up to a scale factor of 2N.

The (unnormalized) DST-IV is its own inverse, up to a factor 2/N. The orthonormalized DST-IV is exactly its own
inverse.

References

(1]

scipy.fft.idst

scipy.fft.idst (x, type=2, n=None, axis=- 1, norm=None, overwrite_x=False, workers=None,

orthogonalize=None)
Return the Inverse Discrete Sine Transform of an arbitrary type sequence.

Parameters

X [array_like] The input array.

type [{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.

n [int, optional] Length of the transform. If n < x.shape[axis], xis truncated. If n >
x.shape [axis], xis zero-padded. The default resultsinn = x.shape[axis].

axis [int, optional] Axis along which the idst is computed; the default is over the last axis (i.e.,
axis=-1).

norm [{“backward”, “ortho”, “forward”}, optional] Normalization mode (see Notes). Default is
“backward”.

overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False.
workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

orthogonalize
[bool, optional] Whether to use the orthogonalized IDST variant (see Notes). Defaults to
True when norm=="ortho" and False otherwise.

New in version 1.8.0.
Returns
idst [ndarray of real] The transformed input array.

See also:

dst
Forward DST

Notes

Warning: For type in {2, 3}, norm="ortho" breaks the direct correspondence with the inverse
direct Fourier transform.

For norm="ortho" both the dst and idst are scaled by the same overall factor in both directions. By default,
the transform is also orthogonalized which for types 2 and 3 means the transform definition is modified to give
orthogonality of the DST matrix (see dst for the full definitions).

‘The’ IDST is the IDST-II, which is the same as the normalized DST-III.

408

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

The IDST is equivalent to a normal DST except for the normalization and type. DST type 1 and 4 are their own
inverse and DSTs 2 and 3 are each other’s inverses.

scipy.fft.dstn

scipy.fft.dstn (x, type=2, s=None, axes=None, norm=None, overwrite_x=False, workers=None,
orthogonalize=None)
Return multidimensional Discrete Sine Transform along the specified axes.

Parameters

X

type
S

axes

norm

[array_like] The input array.

[{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.

[int or array_like of ints or None, optional] The shape of the result. If both s and axes
(see below) are None, s is x . shape; if s is None but axes is not None, then s is numpy .
take (x.shape, axes, axis=0).Ifs[i] > x.shape[i], the ith dimension
is padded with zeros. If s[1] < x.shape[1i], the ith dimension is truncated to length
s [1]. If any element of shape is -1, the size of the corresponding dimension of x is used.
[int or array_like of ints or None, optional] Axes over which the DST is computed. If not
given, the last 1en (s) axes are used, or all axes if s is also not specified.

[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see Notes). Default is
“backward”.

overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £ £t for more details.

orthogonalize
[bool, optional] Whether to use the orthogonalized DST variant (see Notes). Defaults to
True when norm=="ortho" and False otherwise.
New in version 1.8.0.

Returns
y [ndarray of real] The transformed input array.
See also:

idstn

Inverse multidimensional DST

Notes

For full details of the DST types and normalization modes, as well as references, see dst.

Examples

>>>
>>>
>>>
>>>

from scipy.fft import dstn, idstn
rng = np.random.default_rng()

y = rng.standard_normal ((16, 16))
np.allclose(y, idstn(dstn(y)))

True

3.3. API definition

409

SciPy Reference Guide, Release 1.8.0

scipy.fft.idstn

scipy.fft.idstn (x, type=2, s=None, axes=None, norm=None, overwrite_x=False, workers=None,

orthogonalize=None)

Return multidimensional Inverse Discrete Sine Transform along the specified axes.

Parameters

X

type
S

axes

norm

[array_like] The input array.

[{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.

[int or array_like of ints or None, optional] The shape of the result. If both s and axes
(see below) are None, s is x . shape; if s is None but axes is not None, then s is numpy .
take (x.shape, axes, axis=0).Ifs[i] > x.shape[i], the ith dimension
is padded with zeros. If s[i] < x.shape[i], the ith dimension is truncated to length
s[1]. If any element of s is -1, the size of the corresponding dimension of x is used.

[int or array_like of ints or None, optional] Axes over which the IDST is computed. If not
given, the last 1en (s) axes are used, or all axes if s is also not specified.

[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see Notes). Default is
“backward”.

overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False.

workers [int, optional] Maximum number of workers to use for parallel computation. If negative, the
value wraps around from os . cpu_count (). See £t for more details.

orthogonalize
[bool, optional] Whether to use the orthogonalized IDST variant (see Notes). Defaults to
True when norm=="ortho" and Fal se otherwise.
New in version 1.8.0.

Returns
y [ndarray of real] The transformed input array.
See also:

dstn

multidimensional DST

Notes

For full details of the IDST types and normalization modes, as well as references, see i dst.

Examples

>>>
>>>
>>>
>>>

from scipy.fft import dstn, idstn
rng = np.random.default_rng()

y = rng.standard_normal ((16, 16))
np.allclose(y, idstn(dstn(y)))

True

410

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Fast Hankel Transforms

fht(a, dln, mu[, offset, bias]) Compute the fast Hankel transform.
1 rht(A, dln, mu[, offset, bias]) Compute the inverse fast Hankel transform.
scipy.fft.fht

scipy.fft.£ht (a, din, mu, offset=0.0, bias=0.0)
Compute the fast Hankel transform.

Computes the discrete Hankel transform of a logarithmically spaced periodic sequence using the FFTLog algorithm

(1], [2].

Parameters
a [array_like (..., n)] Real periodic input array, uniformly logarithmically spaced. For multi-
dimensional input, the transform is performed over the last axis.
din [float] Uniform logarithmic spacing of the input array.
mu [float] Order of the Hankel transform, any positive or negative real number.
offset [float, optional] Offset of the uniform logarithmic spacing of the output array.
bias [float, optional] Exponent of power law bias, any positive or negative real number.
Returns
A [array_like (..., n)] The transformed output array, which is real, periodic, uniformly loga-
rithmically spaced, and of the same shape as the input array.
See also:
ifht

The inverse of £ht.
fhtoffset

Return an optimal offset for Fht.

Notes

This function computes a discrete version of the Hankel transform

A(k) = /Oooa(r) T (kr) ke dr

where J, is the Bessel function of order 4. The index 1 may be any real number, positive or negative.
The input array a is a periodic sequence of length n, uniformly logarithmically spaced with spacing din,

aj =a(r;), r;=rcexp[(j — j.)dln]
centred about the point .. Note that the central index j. = (n + 1)/2 is half-integral if n is even, so that .
falls between two input elements. Similarly, the output array A is a periodic sequence of length n, also uniformly
logarithmically spaced with spacing din

Aj = A(kj)) kj = ke exp[(j _jC) dln]

centred about the point k..

3.3. API definition 411

SciPy Reference Guide, Release 1.8.0

The centre points 7. and k. of the periodic intervals may be chosen arbitrarily, but it would be usual to choose
the product k.r. = k;jrn—1—; = kn,—1—;7; to be unity. This can be changed using the offset parameter, which
controls the logarithmic offset log(k.) = offset — log(r.) of the output array. Choosing an optimal value for
offset may reduce ringing of the discrete Hankel transform.

If the bias parameter is nonzero, this function computes a discrete version of the biased Hankel transform

Ak) = /O " 0y () (kr)? T, (k) ke dr

where ¢ is the value of bias, and a power law bias a4 (1) = a(r) (kr)~? is applied to the input sequence. Biasing
the transform can help approximate the continuous transform of a(r) if there is a value ¢ such that a,(r) is close
to a periodic sequence, in which case the resulting A (k) will be close to the continuous transform.

References

(11, [2]

scipy.fft.ifht

scipy.fft.ifht (A, din, mu, offset=0.0, bias=0.0)

Compute the inverse fast Hankel transform.

Computes the discrete inverse Hankel transform of a logarithmically spaced periodic sequence. This is the inverse
operation to fht.

Parameters
A [array_like (..., n)] Real periodic input array, uniformly logarithmically spaced. For multi-
dimensional input, the transform is performed over the last axis.
din [float] Uniform logarithmic spacing of the input array.
mu [float] Order of the Hankel transform, any positive or negative real number.
offset [float, optional] Offset of the uniform logarithmic spacing of the output array.
bias [float, optional] Exponent of power law bias, any positive or negative real number.
Returns
a [array_like (..., n)] The transformed output array, which is real, periodic, uniformly loga-
rithmically spaced, and of the same shape as the input array.
See also:

fht
Definition of the fast Hankel transform.
fhtoffset

Return an optimal offset for i fht.

412

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Notes

This function computes a discrete version of the Hankel transform

a(r) = /OOOA(k) Ju(kr)rdk ,

where J,, is the Bessel function of order y. The index ;2 may be any real number, positive or negative.

See rht for further details.

Helper functions

fftshift(x[, axes]) Shift the zero-frequency component to the center of the
spectrum.

ifftshift(x[, axes]) The inverse of fftshift.

frtfreqg(n[, d]) Return the Discrete Fourier Transform sample frequen-
cies.

rfftfreqg(nl,d]) Return the Discrete Fourier Transform sample frequen-
cies (for usage with rftt, irfft).

fhtoffset(dln, mul, initial, bias]) Return optimal offset for a fast Hankel transform.

next_fast_len Find the next fast size of input data to £ft, for zero-
padding, etc.

set_workers(workers) Context manager for the default number of workers used
in scipy.frft

get_workers() Returns the default number of workers within the current
context

scipy.fft.fitshift

scipy.fft.fftshift (x, axes=None)
Shift the zero-frequency component to the center of the spectrum.

This function swaps half-spaces for all axes listed (defaults to all). Note that y [0] is the Nyquist component only
if 1len (x) is even.

Parameters
X [array_like] Input array.
axes [int or shape tuple, optional] Axes over which to shift. Default is None, which shifts all axes.
Returns
y [ndarray] The shifted array.
See also:
ifftshift

The inverse of Frtshift.

3.3. API definition 413

SciPy Reference Guide, Release 1.8.0

Examples

>>> fregs = np.fft.fftfreq(10, 0.1)

>>> fregs

array ([0., 1., 2.7 weey, 3., =2., -1.1)

>>> np.fft.fftshift (freqgs)

array([-5., -4., -3., -2., -1., O., 1., 2., 3., 4.1)

Shift the zero-frequency component only along the second axis:

>>> fregs = np.fft.fftfreq(9, d=1./9) .reshape (3, 3)
>>> fregs
array ([[O., 1., 2.1,

[3., 4., -4.1,

[-3., —-2., -1.11)
>>> np.fft.fftshift (freqs, axes=(1,))
array ([[2., 0., 1.1,

[-4., 3., 4.1,

(-1., 3., -2.11)

scipy.fit.ifftshift

scipy.fft.ifftshift (x, axes=None)
The inverse of £ftshift. Although identical for even-length x, the functions differ by one sample for odd-length

X.
Parameters
X [array_like] Input array.
axes [int or shape tuple, optional] Axes over which to calculate. Defaults to None, which shifts all
axes.
Returns
y [ndarray] The shifted array.
See also:
fftshift
Shift zero-frequency component to the center of the spectrum.
Examples

>>> freqs = np.fft.fftfreq(9, d=1./9) .reshape (3, 3)

>>> fregs

array ([[O., 1., 2.
[3., 4., -4
[-3., 2., -1.

>>> np.fft.ifftshift(

array([[O., 1., 2
[3., 4., -4
[-3., -2.,

l4

]

]I

11)

np.fft.fftshift (fregs))
]

]

]

M 4

[N

o~

)

414 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.fft.fftfreq

scipy.fft.fftfreq (n,d=1.0)
Return the Discrete Fourier Transform sample frequencies.

The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero at
the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

f =10, 1, ..., n/2-1, -n/2, ..., —-11 / (d*n) if n is even
f =10, 1, ..., (n-1)/2, —(n-1)/2, ..., =11 / (d*n) if n is odd
Parameters
n [int] Window length.
d [scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.
Returns
f [ndarray] Array of length n containing the sample frequencies.
Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)

>>> n signal.size

>>> timestep = 0.1

>>> freq = np.fft.fftfreqg(n, d=timestep)

>>> freqg

array([0. , 1.25, 2.5, ..., -3.75, -2.5 , -1.25])

scipy.fft.rfftfreq

scipy.fft.rfftfreq(n,d=1.0)
Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).

The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero at
the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

£ =100, 1, ..., n/2-1, n/2]
£ =10, 1, ..., (n-1)/2-1, (n-1)/2]

(d*n) if n is even

/
/ (d*n) if n is odd

Unlike fftfreq (butlike scipy. fftpack.rfftfreq) the Nyquist frequency component is considered to
be positive.

Parameters

n [int] Window length.

d [scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.
Returns

f [ndarray] Array of lengthn//2 + 1 containing the sample frequencies.

3.3. API definition 415

SciPy Reference Guide, Release 1.8.0

Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 41, dtype=float)
>>> fourier = np.fft.rfft (signal)

>>> n = signal.size

>>> sample_rate = 100

>>> freq = np.fft.fftfreg(n, d=1./sample_rate)

>>> freq
array ([
>>> freq
>>> freq
array([0., 10., 20., 30., 40., 50.])

(@)
~

10., 20., ..., -30., -20., -10.1)
np.fft.rfftfreq(n, d=1./sample_rate)

scipy.fft.fhtoffset

scipy.fft.fhtoffset (din, mu, initial=0.0, bias=0.0)
Return optimal offset for a fast Hankel transform.

Returns an offset close to inifial that fulfils the low-ringing condition of [1] for the fast Hankel transform rht with
logarithmic spacing dIn, order mu and bias bias.

Parameters
din [float] Uniform logarithmic spacing of the transform.
mu [float] Order of the Hankel transform, any positive or negative real number.
initial [float, optional] Initial value for the offset. Returns the closest value that fulfils the low-ringing
condition.
bias [float, optional] Exponent of power law bias, any positive or negative real number.
Returns
offset [float] Optimal offset of the uniform logarithmic spacing of the transform that fulfils a low-
ringing condition.
See also:

fht

Definition of the fast Hankel transform.

References

(1]

scipy.fft.next_fast_len

scipy.fft.next_fast_len|()
Find the next fast size of input data to f f£t, for zero-padding, etc.

SciPy’s FFT algorithms gain their speed by a recursive divide and conquer strategy. This relies on efficient functions
for small prime factors of the input length. Thus, the transforms are fastest when using composites of the prime
factors handled by the fft implementation. If there are efficient functions for all radices <= n, then the result will
be a number x >= target with only prime factors < . (Also known as n-smooth numbers)

Parameters
target [int] Length to start searching from. Must be a positive integer.
real [bool, optional] True if the FFT involves real input or output (e.g., £t or hfft but not

frt). Defaults to False.

416 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Returns
out [int] The smallest fast length greater than or equal to target.

Notes

The result of this function may change in future as performance considerations change, for example, if new prime
factors are added.

Calling £ft or ifft with real input data performs an 'R2C"' transform internally.

Examples

On a particular machine, an FFT of prime length takes 11.4 ms:

>>> from scipy import fft

>>> rng = np.random.default_rng()

>>> min_len = 93059 # prime length is worst case for speed
>>> a = rng.standard_normal (min_len)

>>> b = fft.fft (a)

Zero-padding to the next regular length reduces computation time to 1.6 ms, a speedup of 7.3 times:

>>> fft.next_fast_len(min_len, real=True)
93312
>>> b = fft.fft (a, 93312)

Rounding up to the next power of 2 is not optimal, taking 3.0 ms to compute; 1.9 times longer than the size given
by next_fast_len:

>>> b = fft.fft(a, 131072)

scipy.fft.set_workers

scipy.fft.set_workers (workers)
Context manager for the default number of workers used in scipy. fft

Parameters

workers [int] The default number of workers to use

Examples

>>> from scipy import fft, signal
>>> rng = np.random.default_rng()

>>> x = rng.standard_normal ((128, 64))
>>> with fft.set_workers(4):
y = signal.fftconvolve (x, Xx)

3.3. API definition 417

SciPy Reference Guide, Release 1.8.0

scipy.fft.get_workers

scipy.fft.get_workers ()
Returns the default number of workers within the current context

Examples

>>> from scipy import fft
>>> fft.get_workers|()

1

>>> with fft.set_workers(4):
fft.get_workers ()

Backend control

set_backend(backend], coerce, only]) Context manager to set the backend within a fixed scope.
skip_backend(backend) Context manager to skip a backend within a fixed scope.
set_global_backend(backend[, coerce, only, ...]) Sets the global fft backend
register_backend(backend) Register a backend for permanent use.

scipy.fft.set_backend

scipy.fft.set_backend (backend, coerce=False, only=False)
Context manager to set the backend within a fixed scope.

Upon entering the with statement, the given backend will be added to the list of available backends with the
highest priority. Upon exit, the backend is reset to the state before entering the scope.

Parameters

backend [{object, ‘scipy’}] The backend to use. Can either be a st r containing the name of a known
backend {‘scipy’} or an object that implements the uarray protocol.

coerce [bool, optional] Whether to allow expensive conversions for the x parameter. e.g., copying
a NumPy array to the GPU for a CuPy backend. Implies only.
only [bool, optional] If only is True and this backend returns Not Implemented, then a Back-

endNotImplemented error will be raised immediately. Ignoring any lower priority backends.

Examples

>>> import scipy.fft as fft

>>> with fft.set_backend('scipy', only=True):

. fft.£ft([1]1) # Always calls the scipy implementation
array ([1.+0.731)

418 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.fft.skip_backend

scipy.fft.skip_backend (backend)
Context manager to skip a backend within a fixed scope.

Within the context of a with statement, the given backend will not be called. This covers backends registered
both locally and globally. Upon exit, the backend will again be considered.

Parameters

backend [{object, ‘scipy’}] The backend to skip. Can either be a st r containing the name of a known
backend {‘scipy’} or an object that implements the uarray protocol.

Examples

>>> import scipy.fft as fft

>>> fft.fft ([1]) # Calls default SciPy backend
array ([1.+0.731)
>>> with fft.skip_backend('scipy'): # We explicitly skip the SciPy.
—~backend
fft.£fE([1]) # leaving no implementation available

Traceback (most recent call last):

BackendNotImplementedError: No selected backends had an implementation

scipy.fft.set_global_backend

scipy.fft.set_global_backend (backend, coerce=False, only=False, try_last=False)
Sets the global fft backend

This utility method replaces the default backend for permanent use. It will be tried in the list of backends automat-
ically, unless the only flag is set on a backend. This will be the first tried backend outside the set_backend
context manager.

Parameters

backend [{object, ‘scipy’}] The backend to use. Can either be a st r containing the name of a known
backend {‘scipy’} or an object that implements the uarray protocol.

coerce [bool] Whether to coerce input types when trying this backend.

only [bool] If True, no more backends will be tried if this fails. Implied by coerce=True.

try_last [bool] If True, the global backend is tried after registered backends.

Raises
ValueError: If the backend does not implement numpy . scipy. ££ft.

Notes

This will overwrite the previously set global backend, which, by default, is the SciPy implementation.

3.3. API definition 419

SciPy Reference Guide, Release 1.8.0

Examples

We can set the global fft backend:

>>> from scipy.fft import fft, set_global_backend

>>> set_global_backend("scipy") # Sets global backend. "scipy" is the.
—~default backend.
>>> fft ([1]) # Calls the global backend

array ([1.+0.731)

scipy.fft.register_backend

scipy.fft.register_backend (backend)
Register a backend for permanent use.

Registered backends have the lowest priority and will be tried after the global backend.
Parameters

backend [{object, ‘scipy’}] The backend to use. Can either be a st r containing the name of a known
backend {‘scipy’} or an object that implements the uarray protocol.

Raises
ValueError: If the backend does not implement numpy . scipy. ££t.
Examples

We can register a new fft backend:

>>> from scipy.fft import fft, register_backend, set_global_ backend
>>> class NoopBackend: # Define an invalid Backend

__ua_domain__ = "numpy.scipy.fft"

def __ _ua_function__ (self, func, args, kwargs):
B return NotImplemented
>>> set_global_backend (NoopBackend()) # Set the invalid backend as global
>>> register_backend("scipy") # Register a new backend
>>> fft ([1]) # The registered backend is called because the global.
—backend returns "NotImplemented’
array ([1.40.731])
>>> set_global_backend ("scipy") # Restore global backend to default

3.3.6 Legacy discrete Fourier transforms (scipy. £ftpack)

Warning: This submodule is now considered legacy, new code should use scipy. fft.

Fast Fourier Transforms (FFTs)

fre(x[, n, axis, overwrite_x]) Return discrete Fourier transform of real or complex se-
quence.

continues on next page

420 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Table 21 - continued from previous page

1 fre(x[, n, axis, overwrite_x])

Return discrete inverse Fourier transform of real or com-
plex sequence.

£t 2(x[, shape, axes, overwrite_x])

2-D discrete Fourier transform.

1t 2(x[, shape, axes, overwrite_x])

2-D discrete inverse Fourier transform of real or complex
sequence.

frtn(x[, shape, axes, overwrite_x])

Return multidimensional discrete Fourier transform.

1 fren(x[, shape, axes, overwrite_x])

Return inverse multidimensional discrete Fourier trans-
form.

rfrt(x[, n, axis, overwrite_x])

Discrete Fourier transform of a real sequence.

1rffrt(x[, n, axis, overwrite_x])

Return inverse discrete Fourier transform of real se-
quence X.

dct(x[, type, n, axis, norm, overwrite_x])

Return the Discrete Cosine Transform of arbitrary type
sequence X.

idct(x[, type, n, axis, norm, overwrite_x])

Return the Inverse Discrete Cosine Transform of an ar-
bitrary type sequence.

dctn(x[, type, shape, axes, norm, overwrite_x])

Return multidimensional Discrete Cosine Transform
along the specified axes.

idctn(x[, type, shape, axes, norm, overwrite_x])

Return multidimensional Discrete Cosine Transform
along the specified axes.

dst(x[, type, n, axis, norm, overwrite_x])

Return the Discrete Sine Transform of arbitrary type se-
quence X.

1dst(x[, type, n, axis, norm, overwrite_x])

Return the Inverse Discrete Sine Transform of an arbi-
trary type sequence.

dstn(x[, type, shape, axes, norm, overwrite_x])

Return multidimensional Discrete Sine Transform along
the specified axes.

idstn(x[, type, shape, axes, norm, overwrite_x])

Return multidimensional Discrete Sine Transform along
the specified axes.

scipy.fftpack.fft

scipy.fftpack.££t (x, n=None, axis=- 1, overwrite_x=False)
Return discrete Fourier transform of real or complex sequence.

The returned complex array contains y (0) ,

., y(n-1), where

v(J) = (x * exp(-2*pi*sqgrt(-1)*j*np.arange (n)/n)).sum().
Parameters
X [array_like] Array to Fourier transform.
n [int, optional] Length of the Fourier transform. If n < x.shape [axis],xistruncated. If
n > x.shape[axis],xiszero-padded. The defaultresultsinn = x.shape [axis].
axis [int, optional] Axis along which the fft’s are computed; the default is over the last axis (i.e.,
axis=-1).

overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False.

Returns
z [complex ndarray] with the elements:
ly(0),y(1),..,y(n/2),y(1-n/2), ...,y (-1)] if n is.
—even

—odd

[y (0),y(1),..,y((n-1)/2),y(-(n-1)/2),...,y(-1)] if n is_

3.3. API definition

421

SciPy Reference Guide, Release 1.8.0

v(j) = sum[k=0..n-1] x[k] * exp(-sqgrt(-1)*3*k* 2*pi/n), J_

See also:

ifft
Inverse FFT
rfft

FFT of a real sequence

Notes

The packing of the result is “standard”: If A = fft (a, n), then A[0] contains the zero-frequency term,
A[1l:n/2] contains the positive-frequency terms, and A [n/2:] contains the negative-frequency terms, in order
of decreasingly negative frequency. So ,for an 8-point transform, the frequencies of the result are [0, 1, 2, 3, -4,
-3, -2, -1]. To rearrange the fft output so that the zero-frequency component is centered, like [-4, -3, -2, -1, 0, 1,
2,3],use fftshift.

Both single and double precision routines are implemented. Half precision inputs will be converted to single pre-
cision. Non-floating-point inputs will be converted to double precision. Long-double precision inputs are not
supported.

This function is most efficient when n is a power of two, and least efficient when r is prime.

Note that if x is real-valued, then A[j] == A[n-j].conjugate (). If x is real-valued and n is even, then
A[n/2] isreal.

If the data type of x is real, a “real FFT” algorithm is automatically used, which roughly halves the computation
time. To increase efficiency a little further, use r7t, which does the same calculation, but only outputs half of
the symmetrical spectrum. If the data is both real and symmetrical, the dct can again double the efficiency by
generating half of the spectrum from half of the signal.

Examples

>>> from scipy.fftpack import fft, ifft

>>> x = np.arange (5)
>>> np.allclose(fft(ifft(x)), x, atol=le-15) # within numerical accuracy.
True

scipy.fftpack.ifft

scipy.fftpack.ifft (x, n=None, axis=- 1, overwrite_x=False)
Return discrete inverse Fourier transform of real or complex sequence.

The returned complex array contains y (0) , y (1), ..., y(n-1), where
v(j) = (x * exp(2*pi*sqgrt (-1) *j*np.arange(n)/n)) .mean ().
Parameters

X [array_like] Transformed data to invert.

422 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

n [int, optional] Length of the inverse Fourier transform. If n < x.shape[axis], x
is truncated. If n > x.shape[axis], x is zero-padded. The default results in n =
x.shape[axis].

axis [int, optional] Axis along which the ifft’s are computed; the default is over the last axis (i.e.,
axis=-1).

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False.

Returns
ifft [ndarray of floats] The inverse discrete Fourier transform.

See also:

fft
Forward FFT

Notes

Both single and double precision routines are implemented. Half precision inputs will be converted to single pre-
cision. Non-floating-point inputs will be converted to double precision. Long-double precision inputs are not
supported.

This function is most efficient when 7 is a power of two, and least efficient when n is prime.

If the data type of x is real, a “real IFFT” algorithm is automatically used, which roughly halves the computation
time.

Examples

>>> from scipy.fftpack import fft, ifft

>>> import numpy as np

>>> x = np.arange (5)

>>> np.allclose(ifft (fft(x)), x, atol=le-15) # within numerical accuracy.
True

scipy.fftpack.fft2

scipy.fftpack.££t2 (x, shape=None, axes=(- 2, - 1), overwrite_x=False)

2-D discrete Fourier transform.
Return the 2-D discrete Fourier transform of the 2-D argument x.

See also:

fftn

for detailed information.

3.3. API definition 423

SciPy Reference Guide, Release 1.8.0

Examples
>>> from scipy.fftpack import fft2, ifft2
>>> y = np.mgrid[:5, :5][0]
>>> y
array([[0O, 0, 0, 0O, 01,
(¢, 1, 1, 1, 11,
2, 2, 2, 2, 21,
(3, 3, 3, 3, 31,
(4, 4, 4, 4, 411)
>>> np.allclose(y, ifft2(fft2(y)))
True

scipy.fftpack.ifft2

scipy.fftpack.if£t2 (x, shape=None, axes=(- 2, - 1), overwrite_x=False)
2-D discrete inverse Fourier transform of real or complex sequence.

Return inverse 2-D discrete Fourier transform of arbitrary type sequence X.

See i £t for more information.

See also:
fft2, ifft
Examples
>>> from scipy.fftpack import fft2, ifft2
>>> y = np.mgrid[:5, :5][0]
>>> y
array([[0, O, 0, O, O],
[lr 1/ 1/ j-I l]’
(2, 2, 2, 2, 21,
(3, 3, 3, 3, 31,
(4, 4, 4, 4, 411])
>>> np.allclose(y, fft2(ifft2(y)))
True

scipy.fftpack.fftn

scipy.fftpack.££ftn (x, shape=None, axes=None, overwrite_x=False)
Return multidimensional discrete Fourier transform.

The returned array contains:

v[ij_1,..,3_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
x[k_1,..,k_d] * prod[i=1..d] exp(-sgrt(-1)*2*pi/n_1i * j_i * k_1)

where d = len(x.shape) and n = x.shape.
Parameters

X [array_like] The (N-D) array to transform.

424 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

shape [int or array_like of ints or None, optional] The shape of the result. If both shape and axes
(see below) are None, shape is x . shape; if shape is None but axes is not None, then shape
isnumpy.take (x.shape, axes, axis=0).If shape[i] > x.shape[i],the
ith dimension is padded with zeros. If shape [1] < x.shape[1i], the ith dimension is
truncated to length shape [1i]. If any element of shape is -1, the size of the corresponding

dimension of x is used.

axes [int or array_like of ints or None, optional] The axes of x (y if shape is not None) along

which the transform is applied. The default is over all axes.
overwrite_x

[bool, optional] If True, the contents of x can be destroyed. Default is False.

Returns
y [complex-valued N-D NumPy array] The (N-D) DFT of the input array.
See also:
ifftn
Notes
If x is real-valued, then y [..., j_i, ...] == y[..., n_i-j_1i,

.]1.conjugate ().

Both single and double precision routines are implemented. Half precision inputs will be converted to single pre-
cision. Non-floating-point inputs will be converted to double precision. Long-double precision inputs are not

supported.

Examples

>>> from scipy.fftpack import fftn, ifftn

>>> np.allclose(y, fftn(ifftn(y)))
True

>>> y = (-np.arange(l6), 8 - np.arange(l6), np.arange(16))

scipy.fftpack.ifftn

scipy.fftpack.ifftn (x, shape=None, axes=None, overwrite_x=False)
Return inverse multidimensional discrete Fourier transform.

The sequence can be of an arbitrary type.

The returned array contains:

v[j_1,..,3_d]l = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
x[k_1,..,k_d] * prod[i=1..d] exp(sgrt(-1)*2*pi/n_1i * Jj_i * k_i)

where d = len(x.shape),n = x.shape,andp = prod[i=1..d] n_

For description of parameters see £ £tn.

See also:

fftn

for detailed information.

3.3. API definition

425

SciPy Reference Guide, Release 1.8.0

Examples

>>> from scipy.fftpack import fftn, ifftn

>>> import numpy as np

>>> y = (-np.arange(l16), 8 - np.arange(l6), np.arange(16))
>>> np.allclose(y, ifftn(fftn(y)))

True

scipy.fftpack.rfft

scipy.fftpack.rfft (x, n=None, axis=- 1, overwrite_x=False)
Discrete Fourier transform of a real sequence.

Parameters

X [array_like, real-valued] The data to transform.

n [int, optional] Defines the length of the Fourier transform. If n is not specified (the default)
thenn = x.shapel[axis]. If n < x.shape[axis], xis truncated, if n > x.
shape [axis], x is zero-padded.

axis [int, optional] The axis along which the transform is applied. The default is the last axis.

overwrite_x
[bool, optional] If set to true, the contents of x can be overwritten. Default is False.

Returns
z [real ndarray] The returned real array contains:
[y(0),Re(y (1)), Im(y (1)), ..., Re(y(n/2))] if n.
—~is even
[y(0),Re(y (1)), Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] if n.
—~is odd
where:
v (j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k*2*pi/n)
J =0..n"1
See also:

fft, irfft, scipy.fft.rfft

Notes

Within numerical accuracy, y == rfft (irfft (y)).

Both single and double precision routines are implemented. Half precision inputs will be converted to single pre-
cision. Non-floating-point inputs will be converted to double precision. Long-double precision inputs are not
supported.

To get an output with a complex datatype, consider using the newer function scipy. fft.rfft.

426 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Examples

>>> from scipy.fftpack import fft, rfft

>>> a = [9, -9, 1, 3]

>>> fft (a)

array ([4. +0.3, 8.+12.3, 16. +0.7, 8.-12.31)
>>> rfft (a)

array ([4., 8., 12., 16.])

scipy.fftpack.irfft

scipy.fftpack.irfft (x, n=None, axis=- 1, overwrite_x=False)

Return inverse discrete Fourier transform of real sequence x.

The contents of x are interpreted as the output of the r£ £t function.

Parameters
X [array_like] Transformed data to invert.
n [int, optional] Length of the inverse Fourier transform. If n < x.shape[axis], x is truncated.
If n > x.shape[axis], x is zero-padded. The default results in n = x.shape[axis].
axis [int, optional] Axis along which the ifft’s are computed; the default is over the last axis (i.e.,
axis=-1).
overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False.
Returns
irfft [ndarray of floats] The inverse discrete Fourier transform.
See also:

rfft, ifft, scipy.fft.irfft

Notes

The returned real array contains:

[y (0),y(1),...,y(n-1)]

where for n is even:

v(j) = 1/n (sum[k=1..n/2-1] (x[2*k-1]+sqgrt (-1)*x[2*k])
* exp(sqgrt (-1) *j*k* 2*pi/n)
+ c.c. + x[0] + (=1)**(3) x[n-11)

and for n is odd:

v(j) = 1/n (sum[k=1..(n-1)/2] (x[2*k—=1]1+sqgrt(-1)*x[2*k])
* exp(sqrt (-1) *j*k* 2*pi/n)
+ c.c. + x[0])

c.c. denotes complex conjugate of preceding expression.
For details on input parameters, see r £ ft.

To process (conjugate-symmetric) frequency-domain data with a complex datatype, consider using the newer func-
tion scipy.fft.irfrt.

3.3. API definition 427

SciPy Reference Guide, Release 1.8.0

Examples

>>> from scipy.fftpack import rfft, irfft

>>> a = [1.0, 2.0, 3.0, 4.0, 5.0]

>>> irfft (a)

array ([2.6 , —3.16405192, 1.24398433, -1.14955713, 1.46962473])
>>> irfft (rfft(a))

array([1., 2., 3., 4., 5.1)

scipy.fftpack.dct

scipy.fftpack.det (x, type=2, n=None, axis=- 1, norm=None, overwrite_x=False)

Return the Discrete Cosine Transform of arbitrary type sequence x.
Parameters

X [array_like] The input array.

type [{1, 2, 3, 4}, optional] Type of the DCT (see Notes). Default type is 2.

n [int, optional] Length of the transform. If n < x.shape[axis],xistruncated. If n >
x.shape [axis], xis zero-padded. The default resultsinn = x.shape[axis].

axis [int, optional] Axis along which the dct is computed; the default is over the last axis (i.e.,
axis=-1).

norm [{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.

overwrite_x

[bool, optional] If True, the contents of x can be destroyed; the default is False.

Returns

y [ndarray of real] The transformed input array.

See also:

idct
Inverse DCT

Notes

For a single dimension array x, dct (x, norm='ortho') isequal to MATLAB dct (x).

There are, theoretically, 8 types of the DCT, only the first 4 types are implemented in scipy. “The’ DCT generally
refers to DCT type 2, and ‘the’ Inverse DCT generally refers to DCT type 3.

Type I

There are several definitions of the DCT-I; we use the following (for norm=None)

N-—-2
wkn

= ~Dkay_ 42 n
vk =30+ (—1)fan 142 @ COS(Nl)

n=1

If norm="ortho', x[0] and x [N-1] are multiplied by a scaling factor of V2, and v [k] is multiplied by a
scaling factor £

= ifk=00or N —1,
f:

otherwise

New in version 1.2.0: Orthonormalization in DCT-I.

428

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Note: The DCT-I is only supported for input size > 1.

Type I1

There are several definitions of the DCT-II; we use the following (for norm=None)

wk(2n 4+ 1)
-9 n
g T, COS (N)
If norm="'ortho"', y [k] is multiplied by a scaling factor £

oV ire=o,
\/ 3 otherwise

which makes the corresponding matrix of coefficients orthonormal (O @ O.T = np.eye (N)).
Type I1T
There are several definitions, we use the following (for norm=None)
N-1
w(2k + 1)n
= 2 n —_—
Y = To + Zw cos(ON >

n=1

or, for norm="ortho'

B e (22552

The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up to a factor 2N. The orthonormalized
DCT-III is exactly the inverse of the orthonormalized DCT-II.

Type IV

There are several definitions of the DCT-IV; we use the following (for norm=None)

m(2k+ 1)(2n + 1)
yk22xncos< N

If norm="'ortho"', y [k] is multiplied by a scaling factor £

1
I~

New in version 1.2.0: Support for DCT-IV.

References

(11, [2]

3.3. API definition 429

SciPy Reference Guide, Release 1.8.0

Examples

The Type 1 DCT is equivalent to the FFT (though faster) for real, even-symmetrical inputs. The output is also real
and even-symmetrical. Half of the FFT input is used to generate half of the FFT output:

>>> from scipy.fftpack import fft, dct

>>> fft(np.array([4., 3., 5., 10., 5., 3.1)) .real
array ([30., -8., 6., -2., 6., -8.1)

>>> dct (np.array([4., 3., 5., 10.1), 1)

array ([30., -8., 6., -2.1)

scipy.fftpack.idct

scipy.fftpack.idet (x, type=2, n=None, axis=- 1, norm=None, overwrite_x=False)
Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.

Parameters

X [array_like] The input array.
type [{1, 2,3, 4}, optional] Type of the DCT (see Notes). Default type is 2.
[

n int, optional] Length of the transform. If n < x.shape[axis],xistruncated. If n >
x.shape [axis], xis zero-padded. The default resultsinn = x.shape[axis].

axis [int, optional] Axis along which the idct is computed; the default is over the last axis (i.e.,
axis=-1).

norm [{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False.

Returns
idct [ndarray of real] The transformed input array.

See also:

dct
Forward DCT

Notes

For a single dimension array x, idct (x, norm='ortho') isequal to MATLAB idct (x).
‘The’ IDCT is the IDCT of type 2, which is the same as DCT of type 3.

IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type 3, and IDCT of type 3 is the DCT of
type 2. IDCT of type 4 is the DCT of type 4. For the definition of these types, see dct.

430 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Examples

The Type 1 DCT is equivalent to the DFT for real, even-symmetrical inputs. The output is also real and even-
symmetrical. Half of the IFFT input is used to generate half of the IFFT output:

array ([4.,

array ([4.,

>>> from scipy.fftpack import ifft, idct
>>> ifft(np.array([30., -8., 6., -2., 6., —8.1)).real

3., 5., 10., 5., 3.1)

>>> idct (np.array ([30., -8., 6., -2.1), 1) / 6

3., 5., 10.1)

scipy.fftpack.dctn

scipy.fftpack.dectn (x, type=2, shape=None, axes=None, norm=None, overwrite_x=False)
Return multidimensional Discrete Cosine Transform along the specified axes.

Parameters

X

type
shape

axes

norm

[array_like] The input array.

[{1, 2,3, 4}, optional] Type of the DCT (see Notes). Default type is 2.

[int or array_like of ints or None, optional] The shape of the result. If both shape and axes
(see below) are None, shape is x . shape; if shape is None but axes is not None, then shape
isnumpy.take (x.shape, axes, axis=0).Ifshape[i] > x.shape[i],the
ith dimension is padded with zeros. If shape[1] < x.shape[i], the ith dimension is
truncated to length shape [1i]. If any element of shape is -1, the size of the corresponding
dimension of x is used.

[int or array_like of ints or None, optional] Axes along which the DCT is computed. The
default is over all axes.

[{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.

overwrite_x

Returns

y

See also:

idectn

[bool, optional] If True, the contents of x can be destroyed; the default is False.

[ndarray of real] The transformed input array.

Inverse multidimensional DCT

Notes

For full details of the DCT types and normalization modes, as well as references, see dct.

3.3. API definition

431

SciPy Reference Guide, Release 1.8.0

Examples

>>> from scipy.fftpack import dctn, idctn

>>> rng = np.random.default_rng()

>>> y = rng.standard_normal ((16, 16))

>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
True

scipy.fftpack.idctn

scipy.fftpack.idetn (x, type=2, shape=None, axes=None, norm=None, overwrite_x=False)
Return multidimensional Discrete Cosine Transform along the specified axes.

Parameters

X [array_like] The input array.

type [{1, 2, 3, 4}, optional] Type of the DCT (see Notes). Default type is 2.

shape [int or array_like of ints or None, optional] The shape of the result. If both shape and axes
(see below) are None, shape is x . shape; if shape is None but axes is not None, then shape
isnumpy.take (x.shape, axes, axis=0).Ifshape[i] > x.shape[i],the
ith dimension is padded with zeros. If shape[i] < x.shape[i], the ith dimension is
truncated to length shape [i]. If any element of shape is -1, the size of the corresponding
dimension of x is used.

axes [int or array_like of ints or None, optional] Axes along which the IDCT is computed. The
default is over all axes.

norm [{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False.

Returns
y [ndarray of real] The transformed input array.

See also:

dctn

multidimensional DCT

Notes

For full details of the IDCT types and normalization modes, as well as references, see idct.

Examples

>>> from scipy.fftpack import dctn, idctn

>>> rng = np.random.default_rng()

>>> y = rng.standard_normal ((16, 16))

>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
True

432 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.fftpack.dst

scipy.fftpack.dst (x, type=2, n=None, axis=- 1, norm=None, overwrite_x=False)
Return the Discrete Sine Transform of arbitrary type sequence x.

Parameters

X [array_like] The input array.
type [{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.
[

n int, optional] Length of the transform. If n < x.shape[axis], xis truncated. If n >
x.shape [axis], xis zero-padded. The default resultsinn = x.shape[axis].

axis [int, optional] Axis along which the dst is computed; the default is over the last axis (i.e.,
axis=-1).

norm [{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False.

Returns
dst [ndarray of reals] The transformed input array.

See also:

idst
Inverse DST

Notes

For a single dimension array x.

There are, theoretically, 8 types of the DST for different combinations of even/odd boundary conditions and bound-
ary off sets [1], only the first 4 types are implemented in scipy.

Type 1

There are several definitions of the DST-I; we use the following for norm=None. DST-I assumes the input is odd
around n=-1 and n=N.

N-1
. (7m(E+1)(n+1)
Yk = 27;01'718111 (M

Note that the DST-I is only supported for input size > 1. The (unnormalized) DST-I is its own inverse, up to a
factor 2(N+1). The orthonormalized DST-I is exactly its own inverse.
Type 11

There are several definitions of the DST-II; we use the following for norm=None. DST-II assumes the input is
odd around n=-1/2 and n=N-1/2; the output is odd around k¥ = —1 and even around k=N-1

Yk = QNX_:lmn sin (ﬂ(k +1D(2n + 1))

2N

n=0
if norm="'ortho', y[k] is multiplied by a scaling factor £

i g ik =0,

1 .
5N otherwise

Type I1T

3.3. API definition 433

SciPy Reference Guide, Release 1.8.0

There are several definitions of the DST-IIIL, we use the following (for norm=None). DST-III assumes the input
is odd around n=-1 and even around n=N-1/

N-2
i = (=1 *ay_1 +2 Z 2, sin (7T(2]€ —&—21]\)[(71 + 1))

n=0

The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up to a factor 2N. The orthonormalized
DST-III is exactly the inverse of the orthonormalized DST-II.

New in version 0.11.0.
Type IV

There are several definitions of the DST-IV, we use the following (for norm=None). DST-IV assumes the input
is odd around n=-0.5 and even around n=N-0.5

N-1
. 7r(2k—|—1)(2n+1)>
Yp = 2 Z Ty, SIN <
n=0

AN
The (unnormalized) DST-1V is its own inverse, up to a factor 2N. The orthonormalized DST-IV is exactly its own
inverse.

New in version 1.2.0: Support for DST-IV.

References

(1]
scipy.fftpack.idst

scipy.fftpack.idst (x, type=2, n=None, axis=- 1, norm=None, overwrite_x=False)
Return the Inverse Discrete Sine Transform of an arbitrary type sequence.

Parameters

X [array_like] The input array.
type [{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.
[

n int, optional] Length of the transform. If n < x.shape[axis],xistruncated. If n >
x.shape [axis], xis zero-padded. The default resultsinn = x.shape[axis].

axis [int, optional] Axis along which the idst is computed; the default is over the last axis (i.e.,
axis=-1).

norm [{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.

overwrite_x
[bool, optional] If True, the contents of x can be destroyed; the default is False.

Returns
idst [ndarray of real] The transformed input array.

See also:

dst
Forward DST

434 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Notes

‘The’ IDST is the IDST of type 2, which is the same as DST of type 3.

IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type 3, and IDST of type 3 is the DST of type
2. For the definition of these types, see dst.

New in version 0.11.0.

scipy.fftpack.dstn

scipy.fftpack.dstn (x, type=2, shape=None, axes=None, norm=None, overwrite_x=False)
Return multidimensional Discrete Sine Transform along the specified axes.

Parameters

X

type
shape

axes

norm

[array_like] The input array.

[{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.

[int or array_like of ints or None, optional] The shape of the result. If both shape and axes
(see below) are None, shape is x . shape; if shape is None but axes is not None, then shape
isnumpy.take (x.shape, axes, axis=0).If shape[i] > x.shape[i],the
ith dimension is padded with zeros. If shape [1] < x.shape[1i], the ith dimension is
truncated to length shape [1i]. If any element of shape is -1, the size of the corresponding
dimension of x is used.

[int or array_like of ints or None, optional] Axes along which the DCT is computed. The
default is over all axes.

[{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.

overwrite_x

Returns

y

See also:

idstn

[bool, optional] If True, the contents of x can be destroyed; the default is False.

[ndarray of real] The transformed input array.

Inverse multidimensional DST

Notes

For full details of the DST types and normalization modes, as well as references, see dst.

Examples

>>>
>>>
>>>

>>> from scipy.fftpack import dstn, idstn

rng = np.random.default_rng()
y = rng.standard_normal ((16, 16))
np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))

True

3.3. API definition

435

SciPy Reference Guide, Release 1.8.0

scipy.fftpack.idstn

scipy.fftpack.idstn (x, type=2, shape=None, axes=None, norm=None, overwrite_x=False)
Return multidimensional Discrete Sine Transform along the specified axes.

Parameters

X

type
shape

axes

norm

[array_like] The input array.

[{1, 2, 3, 4}, optional] Type of the DST (see Notes). Default type is 2.

[int or array_like of ints or None, optional] The shape of the result. If both shape and axes
(see below) are None, shape is x . shape; if shape is None but axes is not None, then shape
isnumpy.take (x.shape, axes, axis=0).If shape[i] > x.shapel[il],the
ith dimension is padded with zeros. If shape[i] < x.shape[i], the ith dimension is
truncated to length shape [i]. If any element of shape is -1, the size of the corresponding
dimension of x is used.

[int or array_like of ints or None, optional] Axes along which the IDST is computed. The
default is over all axes.

[{None, ‘ortho’}, optional] Normalization mode (see Notes). Default is None.

overwrite_x

Returns

y

See also:

dstn

[bool, optional] If True, the contents of x can be destroyed; the default is False.

[ndarray of real] The transformed input array.

multidimensional DST

Notes

For full details of the IDST types and normalization modes, as well as references, see idst.

Examples

True

>>> from scipy.fftpack import dstn, idstn

>>> rng = np.random.default_rng()

>>> y = rng.standard_normal ((16, 16))

>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))

Differential and pseudo-differential operators

di £ £(x[, order, period, _cache]) Return kth derivative (or integral) of a periodic sequence
X.

tilbert(x, h[, period, _cache]) Return h-Tilbert transform of a periodic sequence x.

itilbert(x, h[, period, _cache]) Return inverse h-Tilbert transform of a periodic sequence
X.

hilbert(x[,_cache])

Return Hilbert transform of a periodic sequence x.

continues on next page

436

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Table 22 - continued from previous page

ihilbert(x) Return inverse Hilbert transform of a periodic sequence
X.

cs_diff(x, a, b[, period, _cache]) Return (a,b)-cosh/sinh pseudo-derivative of a periodic se-
quence.

sc_diff(x,a,b[, period, _cache]) Return (a,b)-sinh/cosh pseudo-derivative of a periodic se-
quence X.

ss_diff(x,a,b[, period, _cache]) Return (a,b)-sinh/sinh pseudo-derivative of a periodic se-
quence X.

cc_diff(x, a, b[, period, _cache]) Return (a,b)-cosh/cosh pseudo-derivative of a periodic
sequence.

shift(x,a[, period, _cache]) Shift periodic sequence x by a: y(u) = x(u+a).

scipy.fftpack.diff

scipy.fftpack.diff (x, order=1, period=None, _cache={})
Return kth derivative (or integral) of a periodic sequence X.

If x_j and y_j are Fourier coeflicients of periodic functions x and y, respectively, then:

y_Jj = pow(sqrt(-1)*j*2*pi/period, order) * x_j
y_0 = 0 if order is not 0.

Parameters
X [array_like] Input array.
order [int, optional] The order of differentiation. Default order is 1. If order is negative, then
integration is carried out under the assumption that x_0 ==
period [float, optional] The assumed period of the sequence. Default is 2 *p1i.
Notes
If sum(x, axis=0) = Othendiff (diff (x, k), -k) == x (within numerical accuracy).

For odd order and even 1len (x), the Nyquist mode is taken zero.

scipy.fftpack.tilbert

scipy.fftpack.tilbert (x, h, period=None, _cache={})
Return h-Tilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_Jj = sqrt(-1)*coth(j*h*2*pi/period) * x_j
y_0 =0
Parameters
X [array_like] The input array to transform.
h [float] Defines the parameter of the Tilbert transform.
period [float, optional] The assumed period of the sequence. Default period is 2 *p1i.
Returns
tilbert [ndarray] The result of the transform.

3.3. API definition 437

SciPy Reference Guide, Release 1.8.0

Notes
If sum(x, axis=0) == Oandn = len (x) isodd,then tilbert (itilbert (x)) == x.
If2 » pi * h / period is approximately 10 or larger, then numerically tilbert == hilbert

(theoretically oo-Tilbert == Hilbert).

For even 1len (x), the Nyquist mode of x is taken zero.

scipy.fftpack.itilbert

scipy.fftpack.itilbert (x, h, period=None, _cache={})

Return inverse h-Tilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = —-sqrt(-1)*tanh(j*h*2*pi/period) * x_j
y_0 =0

For more details, see t 1 I bert.

scipy.fftpack.hilbert

scipy.fftpack.hilbert (x, _cache={})

Return Hilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_J = sqgrt(-1)*sign(j) * x_J
y_0 =0
Parameters
X [array_like] The input array, should be periodic.
_cache [dict, optional] Dictionary that contains the kernel used to do a convolution with.
Returns
y [ndarray] The transformed input.
See also:

scipy.signal.hilbert

Compute the analytic signal, using the Hilbert transform.

Notes

If sum(x, axis=0) == Othenhilbert (ihilbert (x)) == x.
For even len(x), the Nyquist mode of x is taken zero.

The sign of the returned transform does not have a factor -1 that is more often than not found in the definition of
the Hilbert transform. Note also that scipy.signal.hilbert does have an extra -1 factor compared to this
function.

438

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.fftpack.ihilbert

scipy.fftpack.ihilbert (x)
Return inverse Hilbert transform of a periodic sequence x.

If x_7j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = -sqrt(-1)*sign(j) * x_j
y_0 =20

scipy.fftpack.cs_diff

scipy.fftpack.cs_diff (x, a, b, period=None, _cache={})
Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence.

If x_7j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_j = —-sqrt(-1)*cosh(j*a*2*pi/period)/sinh (j*b*2*pi/period) * x_j
y_0 =0
Parameters
X [array_like] The array to take the pseudo-derivative from.
a,b [float] Defines the parameters of the cosh/sinh pseudo-differential operator.
period [float, optional] The period of the sequence. Default period is 2 *p1.
Returns
cs_diff [ndarray] Pseudo-derivative of periodic sequence x.
Notes

For even len(x), the Nyquist mode of x is taken as zero.

scipy.fftpack.sc_diff

scipy.fftpack.sc_diff (x, a, b, period=None, _cache={})
Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence X.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_Jj = sqrt(-1)*sinh(j*a*2*pi/period) /cosh(j*b*2*pi/period) * x_j
y_0 =0
Parameters
X [array_like] Input array.
a,b [float] Defines the parameters of the sinh/cosh pseudo-differential operator.
period [float, optional] The period of the sequence x. Default is 2*pi.

3.3. API definition 439

SciPy Reference Guide, Release 1.8.0

Notes

sc_diff(cs_diff(x,a,b),b,a) == xForeven len (x), the Nyquist mode of x is taken as zero.

scipy.fftpack.ss_diff

scipy.fftpack.ss_diff (x, a, b, period=None, _cache={})
Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_Jj = sinh(j*a*2*pi/period)/sinh (J*b*2*pi/period) * x_J
y_0 = a/b * x_0

Parameters
X [array_like] The array to take the pseudo-derivative from.
a,b Defines the parameters of the sinh/sinh pseudo-differential operator.
period [float, optional] The period of the sequence x. Default is 2*p1i.
Notes
ss_diff(ss_diff(x,a,b),b,a) == x

scipy.fftpack.cc_diff

scipy.fftpack.cc_diff (x, a, b, period=None, _cache={})
Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_Jj = cosh(j*a*2*pi/period) /cosh (J*b*2*pi/period) * x_J

Parameters
X [array_like] The array to take the pseudo-derivative from.
a,b [float] Defines the parameters of the sinh/sinh pseudo-differential operator.
period [float, optional] The period of the sequence x. Default is 2*p1i.
Returns
cc_diff [ndarray] Pseudo-derivative of periodic sequence x.
Notes
cc_diff(cc_diff(x,a,b),b,a) == x

440 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.fftpack.shift

scipy.fftpack.shift (x, a, period=None, _cache={})
Shift periodic sequence x by a: y(u) = x(u+a).

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then:

y_Jj = exp(j*a*2*pi/period*sqrt (-1)) * x_f

Parameters
X [array_like] The array to take the pseudo-derivative from.
a [float] Defines the parameters of the sinh/sinh pseudo-differential
period [float, optional] The period of the sequences x and y. Default period is 2 *p1i.

Helper functions

fftshift(x[, axes]) Shift the zero-frequency component to the center of the
spectrum.

ifftshift(x[, axes]) The inverse of fftshift.

frefreqg(nl, d]) Return the Discrete Fourier Transform sample frequen-
cies.

rfftfreqg(n[,d]) DFT sample frequencies (for usage with rfft, irfft).

next_fast_ len(target) Find the next fast size of input data to rft, for zero-

padding, etc.

scipy.fftpack.fftshift

scipy.fftpack.fftshift (x, axes=None)
Shift the zero-frequency component to the center of the spectrum.

This function swaps half-spaces for all axes listed (defaults to all). Note that y [0] is the Nyquist component only
if len (x) is even.

Parameters
X [array_like] Input array.
axes [int or shape tuple, optional] Axes over which to shift. Default is None, which shifts all axes.
Returns
y [ndarray] The shifted array.
See also:
ifftshift

The inverse of Frtshift.

3.3. API definition 441

SciPy Reference Guide, Release 1.8.0

Examples

>>> fregs = np.fft.fftfreq(10, 0.1)

>>> fregs

array ([0., 1., 2.7 weey, 3., =2., -1.1)

>>> np.fft.fftshift (freqgs)

array([-5., -4., -3., -2., -1., O., 1., 2., 3., 4.1)

Shift the zero-frequency component only along the second axis:

>>> fregs = np.fft.fftfreq(9, d=1./9) .reshape (3, 3)
>>> fregs
array ([[O., 1., 2.1,

[3., 4., -4.1,

[-3., —-2., -1.11)
>>> np.fft.fftshift (freqs, axes=(1,))
array ([[2., 0., 1.1,

[-4., 3., 4.1,

(-1., 3., -2.11)

scipy.fftpack.ifftshift

scipy.fftpack.ifftshift (x, axes=None)
The inverse of £ftshift. Although identical for even-length x, the functions differ by one sample for odd-length

X.
Parameters
X [array_like] Input array.
axes [int or shape tuple, optional] Axes over which to calculate. Defaults to None, which shifts all
axes.
Returns
y [ndarray] The shifted array.
See also:
fftshift
Shift zero-frequency component to the center of the spectrum.
Examples

>>> freqs = np.fft.fftfreq(9, d=1./9) .reshape (3, 3)

>>> fregs

array ([[O., 1., 2.
[3., 4., -4
[-3., 2., -1.

>>> np.fft.ifftshift(

array([[O., 1., 2
[3., 4., -4
[-3., -2.,

l4

]

]I

11)

np.fft.fftshift (fregs))
]

]

]

M 4

[N

o~

)

442 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.fftpack.fftfreq

scipy.fftpack.fftfreq(n, d=1.0)
Return the Discrete Fourier Transform sample frequencies.

The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero at
the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

f =10, 1, ..., n/2-1, -n/2, ..., —-11 / (d*n) if n is even
f =10, 1, ..., (n-1)/2, —(n-1)/2, ..., =11 / (d*n) if n is odd
Parameters
n [int] Window length.
d [scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.
Returns
f [ndarray] Array of length n containing the sample frequencies.
Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)

>>> n = signal.size

>>> timestep = 0.1

>>> freq = np.fft.fftfreqg(n, d=timestep)

>>> freqg

array([0. , 1.25, 2.5, ..., -3.75, -2.5 , -1.25])

scipy.fftpack.rfftfreq

scipy.fftpack.rfftfreq(n, d=1.0)
DFT sample frequencies (for usage with rftt, irfft).

The returned float array contains the frequency bins in cycles/unit (with zero at the start) given a window length n
and a sample spacing d:

f=10,1,1,2,2,...,n/2-1,n/2-1,n/21/(d*n) if n is even
f=10,1,1,2,2,...,n/2-1,n/2-1,n/2,n/2]1/ (d*n) if n is odd

Parameters
n [int] Window length.
d [scalar, optional] Sample spacing. Default is 1.
Returns
out [ndarray] The array of length n, containing the sample frequencies.

3.3. API definition 443

SciPy Reference Guide, Release 1.8.0

Examples

>>> from scipy import fftpack

>>> sig = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)

>>> sig_fft = fftpack.rfft(siqg)

>>> n = sig_fft.size

>>> timestep = 0.1

>>> freq = fftpack.rfftfreqg(n, d=timestep)

>>> freq

array ([0. , 1.25, 1.25, 2.5, 2.5, 3.75, 3.75, 5. 1)

scipy.fftpack.next_fast_len

scipy.fftpack.next_fast_len (rarget)
Find the next fast size of input data to £ ¢, for zero-padding, etc.

SciPy’s FFTPACK has efficient functions for radix {2, 3, 4, 5}, so this returns the next composite of the prime
factors 2, 3, and 5 which is greater than or equal to farget. (These are also known as 5-smooth numbers, regular
numbers, or Hamming numbers.)

Parameters
target [int] Length to start searching from. Must be a positive integer.
Returns
out [int] The first 5-smooth number greater than or equal to target.
Notes

New in version 0.18.0.

Examples

On a particular machine, an FFT of prime length takes 133 ms:

>>> from scipy import fftpack

>>> rng = np.random.default_rng()
>>> min_len = 10007 # prime length is worst case for speed
>>> a = rng.standard_normal (min_len)

>>> b = fftpack.fft (a)

Zero-padding to the next 5-smooth length reduces computation time to 211 us, a speedup of 630 times:

>>> fftpack.next_fast_len(min_len)
10125
>>> b = fftpack.fft(a, 10125)

Rounding up to the next power of 2 is not optimal, taking 367 us to compute, 1.7 times as long as the 5-smooth
size:

>>> b = fftpack.fft(a, 16384)

Note that fftshift, ifftshift and fftfreq are numpy functions exposed by f ftpack; importing them from
numpy should be preferred.

444 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Convolutions (scipy . fftpack.convolve)

convolve(x,omega,[swap_real_imag,overwrite_x]) Wrapper for convolve.
convolve_z(x,omega_real,omega_imag,[overwrite_x]) Wrapper for convolve_z.
init_convolution_kernel(...) Wrapper for init_convolution_kernel.

destroy_convolve_cache

scipy.fftpack.convolve.convolve

scipy.fftpack.convolve.convolve (x, omega[, swap_real_imag, overwrite_x])
Wrapper for convolve.

Parameters

X [input rank-1 array(‘d’) with bounds (n)]

omega [input rank-1 array(‘d’) with bounds (n)]
Returns

y [rank-1 array(‘d’) with bounds (n) and x storage]
Other Parameters

overwrite_x

[input int, optional] Default: 0
swap_real_imag

[input int, optional] Default: O

scipy.fftpack.convolve.convolve_z

scipy.fftpack.convolve.convolve_z (x, omega_real, omega_imag[, overwrite_x])
Wrapper for convolve_z.

Parameters

X [input rank-1 array(‘d’) with bounds (n)]
omega_real

[input rank-1 array(‘d’) with bounds (n)]
omega_imag

[input rank-1 array(‘d’) with bounds (n)]

Returns
y [rank-1 array(‘d’) with bounds (n) and x storage]
Other Parameters

overwrite_x
[input int, optional] Default: 0

3.3. API definition 445

SciPy Reference Guide, Release 1.8.0

scipy.fftpack.convolve.init_convolution_kernel

scipy.fftpack.convolve.init_convolution_kernel (n, kernel_func[, d, zero_nyquist,

Wrapper for init_convolution_kernel.
Parameters

n [input int]
kernel_func
[call-back function]

kernel _func_extra_args])

Returns

omega [rank-1 array(‘d’) with bounds (n)]
Other Parameters

d [input int, optional] Default: O

kernel_func_extra_args

[input tuple, optional] Default: ()

zero_nyquist

[input int, optional] Default: d%2

Notes

Call-back functions:

def kernel_func (k) :

Required arguments:
k : input int

Return objects:
kernel_func

float

return kernel_func

scipy.fftpack.convolve.destroy_convolve_cache

scipy.fftpack.convolve.destroy_ convolve_cache ()

3.3.7 Integration and ODESs (scipy.integrate)

Integrating functions, given function object

quad(func, a, b[, args, full_output, ...])

Compute a definite integral.

quad_vec(f, a, b[, epsabs, epsrel, norm, ...])

Adaptive integration of a vector-valued function.

db1quad(func, a, b, gfun, hfunl[, args, ...])

Compute a double integral.

tplqguad(func, a, b, gfun, hfun, gfun, rfun)

Compute a triple (definite) integral.

nqguad(func, ranges|, args, opts, full_output])

Integration over multiple variables.

fixed_quad(func, a, b[, args, n])

Compute a definite integral using fixed-order Gaussian
quadrature.

quadrature(func, a, b, args, tol, rtol, ...])

Compute a definite integral using fixed-tolerance Gaus-
sian quadrature.

romberg(function, a, b[, args, tol, rtol, ...])

Romberg integration of a callable function or method.

quad_explain([output])

Print extra information about integrate.quad() parameters
and returns.

continues on next page

446

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Table 25 - continued from previous page

newton_cotes(m[, equal]) Return weights and error coefficient for Newton-Cotes in-
tegration.

IntegrationWarning Warning on issues during integration.

AccuracyWarning

scipy.integrate.quad

scipy.integrate.quad (func, a, b, args=(), full_output=0, epsabs=1.49e-08, epsrel=1.49¢e-08, limit=50,

points=None, weight=None, wvar=None, wopts=None, maxpl =50, limlst=50)

Compute a definite integral.

Integrate func from a to b (possibly infinite interval) using a technique from the Fortran library QUADPACK.

Parameters

func

a
b
args

full_output

Returns

y
abserr

infodict

message
explain

[{function, scipy.LowLevelCallable}] A Python function or method to integrate. If func
takes many arguments, it is integrated along the axis corresponding to the first argument.

If the user desires improved integration performance, then f may be a scipy.
LowLevelCallable with one of the signatures:

double func (double x)

double func (double x, void *user_data)

double func(int n, double *xx)

double func(int n, double *xx, void *user_data)

The user_data is the data contained in the scipy. LowLevelCallable. In the call
forms with xx, n is the length of the xx array which contains xx [0] == x and the rest
of the items are numbers contained in the args argument of quad.

In addition, certain ctypes call signatures are supported for backward compatibility, but those
should not be used in new code.

[float] Lower limit of integration (use -numpy.inf for -infinity).

[float] Upper limit of integration (use numpy.inf for +infinity).

[tuple, optional] Extra arguments to pass to func.

[int, optional] Non-zero to return a dictionary of integration information. If non-zero, warn-
ing messages are also suppressed and the message is appended to the output tuple.

[float] The integral of func from a to b.

[float] An estimate of the absolute error in the result.

[dict] A dictionary containing additional information. Run scipy.integrate.quad_explain()
for more information.

A convergence message.

Appended only with ‘cos’ or ‘sin’ weighting and infinite integration limits, it contains an ex-
planation of the codes in infodict[‘ierlst’]

Other Parameters

epsabs

epsrel

limit

[float or int, optional] Absolute error tolerance. Default is 1.49e-8. quad tries to obtain an
accuracy of abs (i-result) <= max (epsabs, epsrel*abs(i)) where i =
integral of func from a to b, and result is the numerical approximation. See epsrel below.
[float or int, optional] Relative error tolerance. Default is 1.49e-8. If epsabs <= 0, epsrel
must be greater than both 5e-29 and 50 * (machine epsilon). See epsabs above.
[float or int, optional] An upper bound on the number of subintervals used in the adaptive
algorithm.

3.3. API definition

447

SciPy Reference Guide, Release 1.8.0

points

weight
wvar
wopts

maxpl
limlst

See also:

dblquad

double integral

tplquad

triple integral

nquad

[(sequence of floats,ints), optional] A sequence of break points in the bounded integration
interval where local difficulties of the integrand may occur (e.g., singularities, discontinu-
ities). The sequence does not have to be sorted. Note that this option cannot be used in
conjunction with weight.

[float or int, optional] String indicating weighting function. Full explanation for this and the
remaining arguments can be found below.

[optional] Variables for use with weighting functions.

[optional] Optional input for reusing Chebyshev moments.

[float or int, optional] An upper bound on the number of Chebyshev moments.

[int, optional] Upper bound on the number of cycles (>=3) for use with a sinusoidal weighting
and an infinite end-point.

n-dimensional integrals (uses quad recursively)

fixed_quad

fixed-order Gaussian quadrature

quadrature

adaptive Gaussian quadrature

odeint

ODE integrator

ode

ODE integrator

simpson

integrator for sampled data

romb

integrator for sampled data

scipy.special

for coefficients and roots of orthogonal polynomials

448

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Notes

Extra information for quad() inputs and outputs

If full_output is non-zero, then the third output argument (infodict) is a dictionary with entries as tabulated be-
low. For infinite limits, the range is transformed to (0,1) and the optional outputs are given with respect to this
transformed range. Let M be the input argument limit and let K be infodict[‘last’]. The entries are:

‘neval’
The number of function evaluations.
‘last’

The number, K, of subintervals produced in the subdivision process.
‘alist’
A rank-1 array of length M, the first K elements of which are the left end points of the subintervals in the
partition of the integration range.
‘blist’
A rank-1 array of length M, the first K elements of which are the right end points of the subintervals.
‘rlist’
A rank-1 array of length M, the first K elements of which are the integral approximations on the subintervals.
‘elist’

A rank-1 array of length M, the first K elements of which are the moduli of the absolute error estimates on the
subintervals.

‘Gord’

A rank-1 integer array of length M, the first L elements of which are pointers to the error estimates over the
subintervals with L=K if K<=M/2+2 or L=M+1-K otherwise. Let I be the sequence infodict['iord']
and let E be the sequence infodict['elist']. ThenE[I[1]], ..., E[I[L]] formsadecreasing
sequence.

If the input argument points is provided (i.e., it is not None), the following additional outputs are placed in the
output dictionary. Assume the points sequence is of length P.

[

‘pts’

A rank-1 array of length P+2 containing the integration limits and the break points of the intervals in ascending
order. This is an array giving the subintervals over which integration will occur.

‘level’

A rank-1 integer array of length M (=limit), containing the subdivision levels of the subintervals, i.e., if (aa,bb)
is a subinterval of (pts[1], pts[2]) where pts[0] and pts[2] are adjacent elements of infod-
ict['pts'], then (aa,bb) haslevel lif |bb-aa| = |pts[2]-pts[1]]| * 2**(-1).

‘ndin’
A rank-1 integer array of length P+2. After the first integration over the intervals (pts[1], pts[2]), the error

estimates over some of the intervals may have been increased artificially in order to put their subdivision forward.
This array has ones in slots corresponding to the subintervals for which this happens.

Weighting the integrand

The input variables, weight and wvar, are used to weight the integrand by a select list of functions. Different
integration methods are used to compute the integral with these weighting functions, and these do not support
specifying break points. The possible values of weight and the corresponding weighting functions are.

3.3. API definition 449

SciPy Reference Guide, Release 1.8.0

weight | Weight function used wvar

‘cos’ cos(W¥Xx) wvar = w

‘sin’ sin(w*x) wvar = w

‘alg’ g(x) = ((x-a)**alpha)*((b-x)**beta) | wvar = (alpha, beta)
‘alg-loga’ | g(x)*log(x-a) wvar = (alpha, beta)
‘alg-logb’ | g(x)*log(b-x) wvar = (alpha, beta)
‘alg-log’ g(x)*log(x-a)*log(b-x) wvar = (alpha, beta)
‘cauchy’ 1/(x-c) wvar = ¢

wvar holds the parameter w, (alpha, beta), or ¢ depending on the weight selected. In these expressions, a and b are
the integration limits.

For the ‘cos’ and ‘sin” weighting, additional inputs and outputs are available.

For finite integration limits, the integration is performed using a Clenshaw-Curtis method which uses Chebyshev
moments. For repeated calculations, these moments are saved in the output dictionary:

‘momcom’

The maximum level of Chebyshev moments that have been computed, ie., if M_c is infod-
ict ['momcom'] then the moments have been computed for intervals of length |b-a| * 2**(-1),
1=0,1,...,M_c.

‘nnlog’

A rank-1 integer array of length M(=limit), containing the subdivision levels of the subintervals, i.e., an element
of this array is equal to 1 if the corresponding subinterval is |b—a|* 2** (-1).

‘chebmo’

A rank-2 array of shape (25, maxpl) containing the computed Chebyshev moments. These can be passed on
to an integration over the same interval by passing this array as the second element of the sequence wopts and
passing infodict[‘'momcom’] as the first element.

If one of the integration limits is infinite, then a Fourier integral is computed (assuming w neq 0). If full_output
is 1 and a numerical error is encountered, besides the error message attached to the output tuple, a dictionary is
also appended to the output tuple which translates the error codes in the array info['ierlst'] to English
messages. The output information dictionary contains the following entries instead of ‘last’, ‘alist’, ‘blist’, ‘rlist’, and
‘elist”:
‘Ist’

The number of subintervals needed for the integration (call it K_f).

‘rsist’

Arank-1 array of length M_f=limlst, whose first K__f elements contain the integral contribution over the interval
(a+ (k-=1)c, a+kc) wherec = (2*floor(|wl|) + 1) * pi / |w|andk=1,2,...,K_f.

‘erlst’

A rank-1 array of length M_ f containing the error estimate corresponding to the interval in the same position
ininfodict['rslist'].

‘Gerlst’
A rank-1 integer array of length M_ f containing an error flag corresponding to the interval in the same position

ininfodict['rslist']. See the explanation dictionary (last entry in the output tuple) for the meaning
of the codes.

450 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Examples

4 . .
Calculate fo x?dz and compare with an analytic result

>>> from scipy import integrate

>>> x2 = lambda x: x**2

>>> integrate.quad(x2, 0, 4)
(21.333333333333332, 2.3684757858670003e-13)
>>> print (4**3 / 3.) # analytical result
21.3333333333

Calculate [e "dx

>>> invexp = lambda x: np.exp (-Xx)
>>> integrate.quad(invexp, 0, np.inf)
(1.0, 5.842605999138044e-11)

>>> f = lambda x,a : a*x

>>> y, err = integrate.quad(f, 0, 1, args=(1,))
>>> y

0.5

>>> y, err = integrate.quad(f, 0, 1, args=(3,))
>>> y

1.5

Calculate fol 22 + y?dx with ctypes, holding y parameter as 1:

testlib.c =>
double func(int n, double args[n]) {
return args|[0]*args[0] + args[l]*args[l1l];}
compile to library testlib.*

from scipy import integrate

import ctypes

lib = ctypes.CDLL('/home/.../testlib.*') #use absolute path
lib.func.restype = ctypes.c_double

lib.func.argtypes = (ctypes.c_int,ctypes.c_double)
integrate.quad(lib.func, 0,1, (1))

#(1.3333333333333333, 1.4802973661668752e-14)

print ((1.0**3/3.0 + 1.0) - (0.0**3/3.0 + 0.0)) #Analytic result
1.3333333333333333

Be aware that pulse shapes and other sharp features as compared to the size of the integration interval may not be
integrated correctly using this method. A simplified example of this limitation is integrating a y-axis reflected step
function with many zero values within the integrals bounds.

>>> y = lambda x: 1 if x<=0 else 0

>>> integrate.quad(y, -1, 1)

(1.0, 1.1102230246251565e-14)

>>> integrate.quad(y, -1, 100)
(1.0000000002199108, 1.0189464580163188e-08)
>>> integrate.quad(y, -1, 10000)

(0.0, 0.0)

3.3. API definition 451

SciPy Reference Guide, Release 1.8.0

scipy.integrate.quad_vec
scipy.integrate.quad_vec (f, a, b, epsabs=1e-200, epsrel=1e-08, norm="2', cache_size=100000000.0,
limit=10000, workers=1, points=None, quadrature=None, full_output=False, *,

args=())
Adaptive integration of a vector-valued function.

Parameters
f [callable] Vector-valued function f(x) to integrate.
a [float] Initial point.
b [float] Final point.
epsabs [float, optional] Absolute tolerance.
epsrel [float, optional] Relative tolerance.
norm [{‘max’, ©2’}, optional] Vector norm to use for error estimation.
cache_size [int, optional] Number of bytes to use for memoization.
[

int or map-like callable, optional] If workers is an integer, part of the computation is done in
parallel subdivided to this many tasks (usingmultiprocessing.pool.Pool). Supply
-1 to use all cores available to the Process. Alternatively, supply a map-like callable, such as
multiprocessing.pool.Pool.map for evaluating the population in parallel. This
evaluation is carried out as workers (func, iterable).
points [list, optional] List of additional breakpoints.
quadrature
[{‘gk21’, ‘gkl5’, ‘trapezoid’}, optional] Quadrature rule to use on subintervals. Options:
‘ek21” (Gauss-Kronrod 21-point rule), ‘gk15’ (Gauss-Kronrod 15-point rule), ‘trapezoid’
(composite trapezoid rule). Default: ‘gk21’ for finite intervals and ‘gk15’ for (semi-)infinite
full_output
[bool, optional] Return an additional info dictionary.
args [tuple, optional] Extra arguments to pass to function, if any.
New in version 1.8.0.

workers

Returns
res [{float, array-like }] Estimate for the result
err [float] Error estimate for the result in the given norm
info [dict] Returned only when full_output=True. Info dictionary. Is an object with the
attributes:
success [bool] Whether integration reached target precision.
status [int] Indicator for convergence, success (0), failure (1), and failure due to
rounding error (2).
neval [int] Number of function evaluations.
intervals [ndarray, shape (num_intervals, 2)] Start and end points of subdivision inter-
vals.

integrals [ndarray, shape (num_intervals, ...)] Integral for each interval. Note that at
most cache_size values are recorded, and the array may contains nan for
missing items.

errors [ndarray, shape (num_intervals,)] Estimated integration error for each inter-
val.

452 Chapter 3. SciPy API

https://docs.python.org/dev/library/multiprocessing.html#multiprocessing.pool.Pool
https://docs.python.org/dev/library/multiprocessing.html#multiprocessing.pool.Pool.map

SciPy Reference Guide, Release 1.8.0

Notes

The algorithm mainly follows the implementation of QUADPACK’s DQAG* algorithms, implementing global
error control and adaptive subdivision.

The algorithm here has some differences to the QUADPACK approach:

Instead of subdividing one interval at a time, the algorithm subdivides N intervals with largest errors at once. This
enables (partial) parallelization of the integration.

The logic of subdividing “next largest” intervals first is then not implemented, and we rely on the above extension
to avoid concentrating on “small” intervals only.

The Wynn epsilon table extrapolation is not used (QUADPACK uses it for infinite intervals). This is because the
algorithm here is supposed to work on vector-valued functions, in an user-specified norm, and the extension of
the epsilon algorithm to this case does not appear to be widely agreed. For max-norm, using elementwise Wynn
epsilon could be possible, but we do not do this here with the hope that the epsilon extrapolation is mainly useful
in special cases.

References

[1] R. Piessens, E. de Doncker, QUADPACK (1983).

Examples

We can compute integrations of a vector-valued function:

>>> from scipy.integrate import quad_vec

>>> import matplotlib.pyplot as plt

>>> alpha = np.linspace (0.0, 2.0, num=30)

>>> f = lambda x: x**alpha

>>> x0, x1 = 0, 2

>>> vy, err = quad_vec (f, x0, x1)

>>> plt.plot (alpha, vy)

>>> plt.xlabel (r"$\alphas")

>>> plt.ylabel (r"S\int__ " x" \alpha dx$")
>>> plt.show ()

scipy.integrate.dblquad

scipy.integrate.dblquad (func, a, b, gfun, hfun, args=(), epsabs=1.49e-08, epsrel=1.49e-08)
Compute a double integral.

Return the double (definite) integral of func (y, x) fromx = a..bandy = gfun(x)..hfun(x).

Parameters

func [callable] A Python function or method of at least two variables: y must be the first argument
and x the second argument.

a,b [float] The limits of integration in x: a < b

gfun [callable or float] The lower boundary curve in y which is a function taking a single float-
ing point argument (x) and returning a floating point result or a float indicating a constant
boundary curve.

hfun [callable or float] The upper boundary curve in y (same requirements as gfun).

args [sequence, optional] Extra arguments to pass to func.

3.3. API definition 453

SciPy Reference Guide, Release 1.8.0

2.6

2.4
3
[S]
e

S 2.2

2.0 A

T
0.0 0.5 1.0 1.5 2.0
a
epsabs [float, optional] Absolute tolerance passed directly to the inner 1-D quadrature integra-

epsrel

Returns

y
abserr

tion. Default is 1.49e-8. dblquad’ tries to obtain an accuracy of abs (i-result) <=
max (epsabs, epsrel*abs (i)) where i = inner integral of func (y, x) from
gfun (x) to hfun (x), and result is the numerical approximation. See epsrel below.
[float, optional] Relative tolerance of the inner 1-D integrals. Default is 1.49e-8. If epsabs
<= 0, epsrel must be greater than both 5¢-29 and 50 * (machine epsilon). See
epsabs above.

[float] The resultant integral.
[float] An estimate of the error.

See also:

quad

single integral
tplquad

triple integral
nquad

N-dimensional integrals
fixed_quad

fixed-order Gaussian quadrature
quadrature

adaptive Gaussian quadrature
odeint

ODE integrator
ode

ODE integrator

454

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

simpson

integrator for sampled data
romb

integrator for sampled data
scipy.special

for coeflicients and roots of orthogonal polynomials

Examples

Compute the double integral of x * y**2 over the box x ranging from 0 to 2 and y ranging from O to 1.

>>> from scipy import integrate

>>> f = lambda y, x: x*y**2

>>> integrate.dblquad(f, 0, 2, lambda x: 0, lambda x: 1)
(0.6666666666666667, 7.401486830834377e-15)

scipy.integrate.tplquad

scipy.integrate.tplquad (func, a, b, gfun, hfun, qfun, rfun, args=(), epsabs=1.49¢-08, epsrel=1.49¢-08)
Compute a triple (definite) integral.

Return the triple integral of func(z, vy, x) fromx = a..b,y = gfun(x)..hfun(x),and z =
gfun(x,y) ..rfun(x,vy).

Parameters
func [function] A Python function or method of at least three variables in the order (z, y, x).
a,b [float] The limits of integration in X: a < b
gfun [function or float] The lower boundary curve in y which is a function taking a single float-
ing point argument (x) and returning a floating point result or a float indicating a constant
boundary curve.
hfun [function or float] The upper boundary curve in y (same requirements as gfun).
gfun [function or float] The lower boundary surface in z. It must be a function that takes two floats
in the order (X, y) and returns a float or a float indicating a constant boundary surface.
rfun [function or float] The upper boundary surface in z. (Same requirements as gfun.)
args [tuple, optional] Extra arguments to pass to func.
epsabs [float, optional] Absolute tolerance passed directly to the innermost 1-D quadrature integra-
tion. Default is 1.49e-8.
epsrel [float, optional] Relative tolerance of the innermost 1-D integrals. Default is 1.49¢e-8.
Returns
y [float] The resultant integral.
abserr [float] An estimate of the error.
See also:
quad

Adaptive quadrature using QUADPACK
quadrature

Adaptive Gaussian quadrature

3.3. API definition 455

SciPy Reference Guide, Release 1.8.0

fixed_quad

Fixed-order Gaussian quadrature
dblquad

Double integrals
nquad

N-dimensional integrals
romb

Integrators for sampled data
simpson

Integrators for sampled data
ode

ODE integrators
odeint

ODE integrators
scipy.special

For coefficients and roots of orthogonal polynomials

Examples

Compute the triple integral of x * y * z, over x ranging from 1 to 2, y ranging from 2 to 3, z ranging from 0
to 1.

>>> from scipy import integrate

>>> f = lambda z, y, X: X*y*z

>>> integrate.tplquad(f, 1, 2, lambda x: 2, lambda x: 3,
lambda x, y: 0, lambda x, y: 1)
(1.8750000000000002, 3.324644794257407e-14)

scipy.integrate.nquad

scipy.integrate.nquad (func, ranges, args=None, opts=None, full_output=False)

Integration over multiple variables.

Wraps quad to enable integration over multiple variables. Various options allow improved integration of discon-
tinuous functions, as well as the use of weighted integration, and generally finer control of the integration process.

Parameters
func [{callable, scipy.LowLevelCallable }] The function to be integrated. Has arguments of x0,
xn,t0, ... tm, where integration is carried out over x0, ... xn, which must
be floats. Where "t0, ... tm’ are extra arguments passed in args. Function signature
should be func (x0, x1, ..., xn, t0, tl, ..., tm). Integration is carried

out in order. That is, integration over x0 is the innermost integral, and xn is the outermost.
If the user desires improved integration performance, then f may be a scipy.
LowLevelCallable with one of the signatures:

456

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

double func(int n, double *xx)
double func (int n, double *xx, void *user_data)

where n is the number of variables and args. The xx array contains the coordinates and extra
arguments. user_data is the data contained in the scipy. LowLevelCallable.

ranges [iterable object] Each element of ranges may be either a sequence of 2 numbers, or else a
callable that returns such a sequence. ranges [0] corresponds to integration over x0, and
so on. If an element of ranges is a callable, then it will be called with all of the integration
arguments available, as well as any parametric arguments. e.g., if func = f (x0, x1,
x2, t0, tl),then ranges[0] may be defined as either (a, b) orelseas (a, b)
= rangeO(x1, x2, t0, t1).

args [iterable object, optional] Additional arguments t0, ..., tn,required by func, ranges,
and opts.
opts [iterable object or dict, optional] Options to be passed to quad. May be empty, a dict,

or a sequence of dicts or functions that return a dict. If empty, the default options from
scipy.integrate.quad are used. If a dict, the same options are used for all levels of integraion.
If a sequence, then each element of the sequence corresponds to a particular integration. e.g.,
opts[0] corresponds to integration over X0, and so on. If a callable, the signature must be the
same as for ranges. The available options together with their default values are:
* epsabs = 1.49¢e-08
* epsrel = 1.49e-08
* limit = 50
* points = None
* weight = None
» wvar = None
* wopts = None
For more information on these options, see quad and quad_explain.

full_output
[bool, optional] Partial implementation of full_output from scipy.integrate.quad.
The number of integrand function evaluations neval can be obtained by setting
full_output=True when calling nquad.

Returns
result [float] The result of the integration.
abserr [float] The maximum of the estimates of the absolute error in the various integration results.

out_dict [dict, optional] A dict containing additional information on the integration.

See also:

quad

1-D numerical integration
dblquad, tplquad

double and triple integrals
fixed_quad

fixed-order Gaussian quadrature
quadrature

adaptive Gaussian quadrature

3.3. API definition 457

SciPy Reference Guide, Release 1.8.0

Examples

>>> from scipy import integrate

>>> func = lambda x0,x1,x2,x3 : x0**2 + x1*x2 - x3**3 + np.sin(x0) + (
R 1 if (x0-.2*x3-.5-.25*x1>0) else 0)
>>> def optsO(*args, **kwargs):
.. return {'points':[0.2%args[2] + 0.5 + 0.25%args[0]]}
>>> integrate.nquad (func, [[O0,1], [-1,1]1, [.13,.8], [-.15,111,
... opts=[optsO,{},{},{}], full_ output=True)
(1.5267454070738633, 2.9437360001402324e-14, {'neval': 388962})

>>> scale = .1
>>> def func2 (x0, x1, x2, x3, t0, til):
.. return x0*x1*x3**2 + np.sin(x2) + 1 + (1 if x0+tl1*x1-t0>0 else 0)
>>> def 1imO(x1, x2, x3, t0, ti1):
return [scale * (x1**2 + x2 + np.cos(x3)*t0*tl + 1) - 1,
C. scale * (x1**2 + x2 + np.cos (x3)*t0*tl + 1) + 1]
>>> def liml (x2, x3, t0, t1l):
return [scale * (t0*x2 + tl1*x3) - 1,
.. scale * (t0*x2 + tl1*x3) + 1]
>>> def 1im2 (x3, t0, tl):
return [scale * (x3 + tO**2*tl1**3) - 1,
C. scale * (x3 + tO0**2*t1**3) + 1]
>>> def 1im3(t0, tl):
. return [scale * (tO+tl) - 1, scale * (tO0+tl) + 1]
>>> def optsO(x1, x2, x3, t0, t1l):
R return {'points' : [t0 - tl1*x1]}
>>> def optsl(x2, x3, t0, tl):
S return {}
>>> def opts2(x3, t0, til):
Ce return {}
>>> def opts3(t0, tl):
return {}
>>> integrate.nquad(func2, [l1im0O, l1iml, lim2, 1im3], args=(0,0),
... opts=[optsO, optsl, opts2, opts3])
(25.066666666666666, 2.7829590483937256e-13)

scipy.integrate.fixed_quad

scipy.integrate. fixed_quad (func, a, b, args=(), n=5)

Compute a definite integral using fixed-order Gaussian quadrature.

Integrate func from a to b using Gaussian quadrature of order n.

Parameters
func [callable] A Python function or method to integrate (must accept vector inputs). If integrating
a vector-valued function, the returned array must have shape (..., len(x)).
a [float] Lower limit of integration.
b [float] Upper limit of integration.
args [tuple, optional] Extra arguments to pass to function, if any.
n [int, optional] Order of quadrature integration. Default is 5.
Returns
val [float] Gaussian quadrature approximation to the integral

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

none [None] Statically returned value of None
See also:
quad
adaptive quadrature using QUADPACK
dblquad

double integrals
tplquad

triple integrals
romberg

adaptive Romberg quadrature
quadrature

adaptive Gaussian quadrature
romb

integrators for sampled data
simpson

integrators for sampled data
cumulative_trapezoid

cumulative integration for sampled data
ode

ODE integrator
odeint

ODE integrator

Examples

>>> from scipy import integrate

>>> f = lambda x: x**8

>>> integrate.fixed_quad(f, 0.0, 1.0, n=4)
(0.1110884353741496, None)

>>> integrate.fixed_quad(f, 0.0, 1.0, n=5)
(0.11111111111111102, None)

>>> print (1/9.0) # analytical result
0.1111111111111111

>>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=4)
(0.9999999771971152, None)

>>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=b5)
(1.000000000039565, None)

>>> np.sin(np.pi/2)-np.sin(0) # analytical result
1.0

3.3. API definition 459

SciPy Reference Guide, Release 1.8.0

scipy.integrate.quadrature

scipy.integrate.quadrature (func, a, b, args=(), tol=1.49¢-08, rtol=1.49e-08, maxiter=50, vec_func="True,

miniter=1)

Compute a definite integral using fixed-tolerance Gaussian quadrature.

Integrate func from a to b using Gaussian quadrature with absolute tolerance fol.

Parameters

func

a

b

args
tol, rtol

maxiter

vec_func

miniter
Returns

val
err

See also:

romberg

[function] A Python function or method to integrate.

[float] Lower limit of integration.

[float] Upper limit of integration.

[tuple, optional] Extra arguments to pass to function.

[float, optional] Iteration stops when error between last two iterates is less than fol OR the
relative change is less than rzol.

[int, optional] Maximum order of Gaussian quadrature.

[bool, optional] True or False if func handles arrays as arguments (is a “vector” function).
Default is True.

[int, optional] Minimum order of Gaussian quadrature.

[float] Gaussian quadrature approximation (within tolerance) to integral.
[float] Difference between last two estimates of the integral.

adaptive Romberg quadrature

fixed_quad

fixed-order Gaussian quadrature

quad

adaptive quadrature using QUADPACK

dblquad

double integrals

tplquad
triple integrals

romb

integrator for sampled data

simpson

integrator for sampled data

cumulative_trapezoid

cumulative integration for sampled data

ode

ODE integrator

odeint

ODE integrator

460

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Examples

>>> from scipy import integrate

>>> f = lambda x: x**8

>>> integrate.quadrature(f, 0.0, 1.0)
(0.11111111111111106, 4.163336342344337e-17)
>>> print (1/9.0) # analytical result
0.1111111111111111

>>> integrate.quadrature (np.cos, 0.0, np.pi/2)
(0.9999999999999536, 3.9611425250996035e-11)

>>> np.sin(np.pi/2)-np.sin(0) # analytical result
1.0

scipy.integrate.romberg

scipy.integrate.romberg (function, a, b, args=(), tol=1.48e-08, rtol=1.48¢-08, show=False, divmax=10,
vec_func=False)
Romberg integration of a callable function or method.

Returns the integral of function (a function of one variable) over the interval (a, b).

If show is 1, the triangular array of the intermediate results will be printed. If vec_func is True (default is False),
then function is assumed to support vector arguments.

Parameters

function [callable] Function to be integrated.

a [float] Lower limit of integration.
b [float] Upper limit of integration.
Returns
results [float] Result of the integration.
Other Parameters
args [tuple, optional] Extra arguments to pass to function. Each element of args will be passed as

a single argument to func. Default is to pass no extra arguments.

tol, rtol [float, optional] The desired absolute and relative tolerances. Defaults are 1.48e-8.

show [bool, optional] Whether to print the results. Default is False.

divmax [int, optional] Maximum order of extrapolation. Default is 10.

vec_func [bool, optional] Whether func handles arrays as arguments (i.e., whether it is a “vector”
function). Default is False.

See also:

fixed_quad

Fixed-order Gaussian quadrature.
quad

Adaptive quadrature using QUADPACK.
dblquad

Double integrals.

3.3. API definition 461

SciPy Reference Guide, Release 1.8.0

tplquad
Triple integrals.
romb
Integrators for sampled data.
simpson
Integrators for sampled data.
cumulative_trapezoid
Cumulative integration for sampled data.
ode
ODE integrator.
odeint

ODE integrator.

References

(1]

Examples

Integrate a gaussian from O to 1 and compare to the error function.

>>> from scipy import integrate
>>> from scipy.special import erf

>>> gaussian = lambda x: 1/np.sqgrt(np.pi) * np.

exp (—x**2)

>>> result = integrate.romberg(gaussian, 0, 1, show=True)
Romberg integration of <function vfunc at ...> from [0, 1]
Steps StepSize Results
1 1.000000 0.385872

2 0.500000 0.412631 0.421551

4 0.250000 0.419184 0.421368 0.421356

8 0.125000 0.420810 0.421352 0.421350 0.421350

16 0.062500 0.421215 0.421350 0.421350 0.421350 0.421350

32 0.031250 0.421317 0.421350 0.421350 0.421350 0.421350 O.
421350

The final result is 0.421350396475 after 33 function evaluations.

>>> print ("%g 2g" % (2*result, erf(1l)))
0.842701 0.842701

462

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.integrate.quad_explain
scipy.integrate.quad_explain (output=<_io. TextlOWrapper name='<stdout>' mode="w'
encoding="utf-8">)
Print extra information about integrate.quad() parameters and returns.

Parameters
output [instance with “write” method, optional] Information about quad is passed to output.
write (). Defaultis sys.stdout.
Returns
None
Examples

We can show detailed information of the infegrate.quad function in stdout:

>>> from scipy.integrate import quad_explain
>>> quad_explain ()

scipy.integrate.newton_cotes

scipy.integrate.newton_cotes (rn, equal=0)
Return weights and error coefficient for Newton-Cotes integration.

Suppose we have (N+1) samples of f at the positions x_0, x_1, ..., X_N. Then an N-point Newton-Cotes formula
for the integral between x_0 and x_N is:

f;oN f(x)de = Az ZﬁV:O a;f(x;) + By (Az)N T2 fN+L(g)

where { € [0, 2n] and Az = X0 s the average samples spacing.

If the samples are equally-spaced and N is even, then the error term is By (Ax)N+3 fN+2(¢),

Parameters
rn [int] The integer order for equally-spaced data or the relative positions of the samples with
the first sample at 0 and the last at N, where N+1 is the length of rn. N is the order of the
Newton-Cotes integration.
equal [int, optional] Set to 1 to enforce equally spaced data.
Returns
an [ndarray] 1-D array of weights to apply to the function at the provided sample positions.
B [float] Error coeflicient.
Notes

Normally, the Newton-Cotes rules are used on smaller integration regions and a composite rule is used to return
the total integral.

3.3. API definition 463

SciPy Reference Guide, Release 1.8.0

Examples

Compute the integral of sin(x) in [0, 7]:

>>> from scipy.integrate import newton_cotes
>>> def f(x):
return np.sin (x)

>> a =0
>>> b = np.pi
>>> exact = 2

>>> for N in [2, 4, 6, 8, 10]:
x = np.linspace(a, b, N + 1)
an, B = newton_cotes (N, 1)
dx = (b - a) / N

quad = dx * np.sum(an * f(x))
error = abs(quad - exact)
print (' '.format (N, quad, error))
2 2.094395102 9.43951e-02
4 1.998570732 1.42927e-03
6 2.000017814 1.78136e-05
8 1.999999835 1.64725e-07
10 2.000000001 1.14677e-09

scipy.integrate.IntegrationWarning

exception scipy.integrate.IntegrationWarning
Warning on issues during integration.

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

scipy.integrate.AccuracyWarning

exception scipy.integrate.AccuracyWarning
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

Integrating functions, given fixed samples

trapezoid(yl, X, dx, axis]) Integrate along the given axis using the composite trape-
zoidal rule.

cumulative_ trapezoid(y[, X, dx, axis, initial]) Cumulatively integrate y(x) using the composite trape-
zoidal rule.

simpson(yl, x, dx, axis, even]) Integrate y(x) using samples along the given axis and the
composite Simpson's rule.

romb(y[, dx, axis, show]) Romberg integration using samples of a function.

464 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.integrate.trapezoid

scipy.integrate.trapezoid (y, x=None, dx=1.0, axis=- 1)
Integrate along the given axis using the composite trapezoidal rule.

If x is provided, the integration happens in sequence along its elements - they are not sorted.

Integrate y (x) along each 1d slice on the given axis, compute [y(x)dz. When x is specified, this integrates along
the parametric curve, computing [, y(t)dt = [, y(t) | _ m At

Parameters
y [array_like] Input array to integrate.
X [array_like, optional] The sample points corresponding to the y values. If x is None, the
sample points are assumed to be evenly spaced dx apart. The default is None.
dx [scalar, optional] The spacing between sample points when x is None. The default is 1.
axis [int, optional] The axis along which to integrate.
Returns
trapz [float or ndarray] Definite integral of ‘y’ = n-dimensional array as approximated along a single
axis by the trapezoidal rule. If ‘y’ is a 1-dimensional array, then the result is a float. If n’ is
greater than 1, then the result is an ‘n-1’ dimensional array.
See also:

numpy . cumsum

Notes
Image [2] illustrates trapezoidal rule — y-axis locations of points will be taken from y array, by default x-axis

distances between points will be 1.0, alternatively they can be provided with x array or with dx scalar. Return value
will be equal to combined area under the red lines.

References

(11, [2]

Examples

>>> np.trapz([1,2,3])

4.0

>>> np.trapz([1,2,3], x=[4,6,8])
8.0

>>> np.trapz([1,2,3], dx=2)

8.0

Using a decreasing x corresponds to integrating in reverse:

>>> np.trapz([1,2,3], x=[8,6,4])
-8.0

More generally x is used to integrate along a parametric curve. This finds the area of a circle, noting we repeat the
sample which closes the curve:

3.3. API definition 465

https://numpy.org/devdocs/reference/generated/numpy.cumsum.html#numpy.cumsum

SciPy Reference Guide, Release 1.8.0

2 * np.pi, num=1000,
x=np.sin(theta))

>>> theta = np.linspace (0,
>>> np.trapz (np.cos (theta),
3.141571941375841

endpoint=True)

>>> a = np.arange(6) .reshape (2, 3)
>>> 3
array ([[0, 1, 2],

2
(3, 4, 511])

>>> np.trapz(a, axis=0)
array ([1.5, 2.5, 3.5])
>>> np.trapz(a, axis=1)
array ([2., 8.1)

scipy.integrate.cumulative_trapezoid

scipy.integrate.cumulative_trapezoid (y, x=None, dx=1.0, axis=- 1, initial=None)

Cumulatively integrate y(x) using the composite trapezoidal rule.

Parameters
y [array_like] Values to integrate.
X [array_like, optional] The coordinate to integrate along. If None (default), use spacing dx
between consecutive elements in y.
dx [float, optional] Spacing between elements of y. Only used if x is None.
axis [int, optional] Specifies the axis to cumulate. Default is -1 (last axis).
initial [scalar, optional] If given, insert this value at the beginning of the returned result. Typically
this value should be 0. Default is None, which means no value at x [0] is returned and res
has one element less than y along the axis of integration.
Returns
res [ndarray] The result of cumulative integration of y along axis. If initial is None, the shape
is such that the axis of integration has one less value than y. If initial is given, the shape is
equal to that of y.
See also:

numpy . cumsum, numpy . cumprod
quad

adaptive quadrature using QUADPACK
romberg

adaptive Romberg quadrature
quadrature

adaptive Gaussian quadrature
fixed_quad

fixed-order Gaussian quadrature
dblquad

double integrals
tplquad

triple integrals

466

Chapter 3. SciPy API

https://numpy.org/devdocs/reference/generated/numpy.cumsum.html#numpy.cumsum
https://numpy.org/devdocs/reference/generated/numpy.cumprod.html#numpy.cumprod

SciPy Reference Guide, Release 1.8.0

romb

integrators for sampled data
ode

ODE integrators
odeint

ODE integrators

Examples

>>> from scipy import integrate
>>> import matplotlib.pyplot as plt

>>> x = np.linspace (-2, 2, num=20)
>>> y = x
>>> y_int = integrate.cumulative_trapezoid(y, x, initial=0)

>>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-")
>>> plt.show ()

0.0

—0.5 ~

—1.0 A

—1.5 A

—2.0 A

scipy.integrate.simpson

scipy.integrate.simpson (y, x=None, dx=1.0, axis=- 1, even="'avg’)
Integrate y(x) using samples along the given axis and the composite Simpson’s rule. If x is None, spacing of dx is
assumed.

If there are an even number of samples, N, then there are an odd number of intervals (N-1), but Simpson’s rule
requires an even number of intervals. The parameter ‘even’ controls how this is handled.

Parameters
y [array_like] Array to be integrated.
X [array_like, optional] If given, the points at which y is sampled.

3.3. API definition 467

SciPy Reference Guide, Release 1.8.0

dx [float, optional] Spacing of integration points along axis of x. Only used when x is None.

Default is 1.

axis [int, optional] Axis along which to integrate. Default is the last axis.
even [str {‘avg’, “first’, ‘last’}, optional]

‘avg’ [Average two results: 1) use the first N-2 intervals with] a trapezoidal rule on the
last interval and 2) use the last N-2 intervals with a trapezoidal rule on the first
interval.

“first’ [Use Simpson’s rule for the first N-2 intervals with] a trapezoidal rule on the last
interval.

‘last’ [Use Simpson’s rule for the last N-2 intervals with a] trapezoidal rule on the first
interval.

See also:

quad

adaptive quadrature using QUADPACK
romberg

adaptive Romberg quadrature
quadrature

adaptive Gaussian quadrature
fixed_quad

fixed-order Gaussian quadrature
dblquad

double integrals
tplquad

triple integrals
romb

integrators for sampled data
cumulative_trapezoid

cumulative integration for sampled data
ode

ODE integrators
odeint

ODE integrators

468 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Notes

For an odd number of samples that are equally spaced the result is exact if the function is a polynomial of order 3
or less. If the samples are not equally spaced, then the result is exact only if the function is a polynomial of order
2 or less.

Examples

>>> from scipy import integrate
>>> x np.arange (0, 10)
np.arange (0, 10)

>>> vy

>>> integrate.simpson (y, Xx)

40.5

>>> y np.power (x, 3)

>>> integrate.simpson(y, X)

1642.5

>>> integrate.quad(lambda x: x**3, 0, 9)[0]
1640.25

>>> integrate.simpson(y, x, even='first'")
1644.5

scipy.integrate.romb

scipy.integrate.romb (y, dx=1.0, axis=- I, show=False)
Romberg integration using samples of a function.

Parameters
y [array_like] A vector of 2**k + 1 equally-spaced samples of a function.
dx [float, optional] The sample spacing. Default is 1.
axis [int, optional] The axis along which to integrate. Default is -1 (last axis).
show [bool, optional] When y is a single 1-D array, then if this argument is True print the table
showing Richardson extrapolation from the samples. Default is False.
Returns
romb [ndarray] The integrated result for axis.
See also:
quad

adaptive quadrature using QUADPACK
romberg

adaptive Romberg quadrature
quadrature

adaptive Gaussian quadrature
fixed_quad

fixed-order Gaussian quadrature

3.3. API definition 469

SciPy Reference Guide, Release 1.8.0

dblquad
double integrals
tplquad
triple integrals
simpson
integrators for sampled data
cumulative_trapezoid
cumulative integration for sampled data
ode
ODE integrators
odeint

ODE integrators

Examples

>>> from scipy import integrate
>>> x = np.arange (10, 14.25, 0.25)
>>> y = np.arange (3, 12)

>>> integrate.romb (y)
56.0

>>> y = np.sin(np.power (x, 2.5))
>>> integrate.romb (y)

-0.742561336672229

>>> integrate.romb(y, show=True)
Richardson Extrapolation Table for Romberg Integration

-0.81576
4.63862 6.45674
-1.10581 -3.02062 -3.65245
-2.57379 -3.06311 -3.06595 -3.0506064
-1.34093 -0.92997 -0.78776 -0.75160 -0.74256
-0.742561336672229
See also:

scipy.special for orthogonal polynomials (special) for Gaussian quadrature roots and weights for other weighting

factors and regions.

470

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Solving initial value problems for ODE systems

The solvers are implemented as individual classes, which can be used directly (low-level usage) or through a convenience
function.

solve_ ivp(fun, t_span, yO[, method, t_eval, ...]) Solve an initial value problem for a system of ODEs.

RK2 3(fun, t0, y0, t_bound[, max_step, rtol, ...]) Explicit Runge-Kutta method of order 3(2).

RK 4 5(fun, t0, y0, t_bound[, max_step, rtol, ...]) Explicit Runge-Kutta method of order 5(4).

DOP 85 3(fun, t0, y0, t_bound[, max_step, ...]) Explicit Runge-Kutta method of order 8.

Radau(fun, t0, y0, t_bound[, max_step, ...]) Implicit Runge-Kutta method of Radau IIA family of or-
der 5.

BDF(fun, t0, yO, t_bound[, max_step, rtol, ...]) Implicit method based on backward-differentiation for-
mulas.

LSODA(fun, t0, y0, t_bound][, first_step, ...]) Adams/BDF method with automatic stiffness detection
and switching.

OdeSolver(fun, t0, y0, t_bound, vectorized) Base class for ODE solvers.

DenseOutput(t_old, t) Base class for local interpolant over step made by an ODE
solver.

OdeSolut ion(ts, interpolants) Continuous ODE solution.

scipy.integrate.solve_ivp

scipy.integrate.solve_ivp (fun, t_span, y0, method='RK45', t_eval=None, dense_output=False,
events=None, vectorized=False, args=None, **options)
Solve an initial value problem for a system of ODE:s.

This function numerically integrates a system of ordinary differential equations given an initial value:

dy / dt = f(t, vy)
y(£0) = yO

Here tis a 1-D independent variable (time), y(t) is an N-D vector-valued function (state), and an N-D vector-valued
function f(t, y) determines the differential equations. The goal is to find y(t) approximately satisfying the differential
equations, given an initial value y(t0)=yO0.

Some of the solvers support integration in the complex domain, but note that for stiff ODE solvers, the right-hand
side must be complex-differentiable (satisfy Cauchy-Riemann equations [11]). To solve a problem in the complex
domain, pass y0 with a complex data type. Another option always available is to rewrite your problem for real and
imaginary parts separately.

Parameters

fun [callable] Right-hand side of the system. The calling signature is fun (t, vy). Heretis
a scalar, and there are two options for the ndarray y: It can either have shape (n,); then fun
must return array_like with shape (n,). Alternatively, it can have shape (n, k); then fun must
return an array_like with shape (n, k), i.e., each column corresponds to a single column in y.
The choice between the two options is determined by vectorized argument (see below). The
vectorized implementation allows a faster approximation of the Jacobian by finite differences
(required for stiff solvers).

t_span [2-tuple of floats] Interval of integration (t0, tf). The solver starts with t=t0 and integrates
until it reaches t=tf.

yo [array_like, shape (n,)] Initial state. For problems in the complex domain, pass y0 with a
complex data type (even if the initial value is purely real).

method [string or OdeSo1ver, optional] Integration method to use:
* ‘RK45’ (default): Explicit Runge-Kutta method of order 5(4) [1]. The error is controlled

assuming accuracy of the fourth-order method, but steps are taken using the fifth-order

3.3. API definition 471

SciPy Reference Guide, Release 1.8.0

t_eval

accurate formula (local extrapolation is done). A quartic interpolation polynomial is used
for the dense output [2]. Can be applied in the complex domain.

* ‘RK23’: Explicit Runge-Kutta method of order 3(2) [3]. The error is controlled assuming
accuracy of the second-order method, but steps are taken using the third-order accurate
formula (local extrapolation is done). A cubic Hermite polynomial is used for the dense
output. Can be applied in the complex domain.

* ‘DOP853’: Explicit Runge-Kutta method of order 8 [13]. Python implementation of the
“DOP853” algorithm originally written in Fortran [14]. A 7-th order interpolation poly-
nomial accurate to 7-th order is used for the dense output. Can be applied in the complex
domain.

» ‘Radau’: Implicit Runge-Kutta method of the Radau IIA family of order 5 [4]. The error
is controlled with a third-order accurate embedded formula. A cubic polynomial which
satisfies the collocation conditions is used for the dense output.

* ‘BDF’: Implicit multi-step variable-order (1 to 5) method based on a backward differen-
tiation formula for the derivative approximation [5]. The implementation follows the one
described in [6]. A quasi-constant step scheme is used and accuracy is enhanced using the
NDF modification. Can be applied in the complex domain.

* ‘LSODA’: Adams/BDF method with automatic stiffness detection and switching [7], [8].
This is a wrapper of the Fortran solver from ODEPACK.

Explicit Runge-Kutta methods (‘RK23’, ‘RK45°, ‘DOP853’) should be used for non-stiff

problems and implicit methods (‘Radaw’, ‘BDF) for stiff problems [9]. Among Runge-Kutta

methods, ‘DOP853’ is recommended for solving with high precision (low values of rfol and
atol).

If not sure, first try to run ‘RK45’. If it makes unusually many iterations, diverges, or fails,

your problem is likely to be stiff and you should use ‘Radau’ or ‘BDF’. ‘LSODA’ can also be

a good universal choice, but it might be somewhat less convenient to work with as it wraps

old Fortran code.

You can also pass an arbitrary class derived from Ode So 1 ver which implements the solver.

[array_like or None, optional] Times at which to store the computed solution, must be sorted

and lie within ¢_span. If None (default), use points selected by the solver.

dense_output

events

vectorized
args

options

[bool, optional] Whether to compute a continuous solution. Default is False.
[callable, or list of callables, optional] Events to track. If None (default), no events will be
tracked. Each event occurs at the zeros of a continuous function of time and state. Each
function must have the signature event (t, vy) and return a float. The solver will find
an accurate value of ¢ at which event (t, y(t)) = 0 using a root-finding algorithm.
By default, all zeros will be found. The solver looks for a sign change over each step, so if
multiple zero crossings occur within one step, events may be missed. Additionally each event
function might have the following attributes:
terminal: bool, optional
Whether to terminate integration if this event occurs. Implicitly False if not
assigned.
direction: float, optional
Direction of a zero crossing. If direction is positive, event will only trigger
when going from negative to positive, and vice versa if direction is negative.
If 0, then either direction will trigger event. Implicitly O if not assigned.
You can assign attributes like event . terminal = True to any function in Python.
[bool, optional] Whether fun is implemented in a vectorized fashion. Default is False.
[tuple, optional] Additional arguments to pass to the user-defined functions. If given, the
additional arguments are passed to all user-defined functions. So if, for example, fun has the
signature fun (t, vy, a, b, c),then jac (if given) and any event functions must have
the same signature, and args must be a tuple of length 3.
Options passed to a chosen solver. All options available for already implemented solvers are
listed below.

472

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

first_step
max_step

rtol, atol

jac

[float or None, optional] Initial step size. Default is None which means that the algorithm
should choose.
[float, optional] Maximum allowed step size. Default is np.inf, i.e., the step size is not
bounded and determined solely by the solver.
[float or array_like, optional] Relative and absolute tolerances. The solver keeps the local
error estimates less than atol + rtol * abs (y). Here rtol controls a relative accuracy
(number of correct digits), while afol controls absolute accuracy (number of correct decimal
places). To achieve the desired rzol, set atol to be lower than the lowest value that can be
expected from rtol * abs (y) so that rtol dominates the allowable error. If atol is larger
than rtol * abs (y) the number of correct digits is not guaranteed. Conversely, to
achieve the desired atol set rtol such that rtol * abs (y) is always lower than atol. If
components of y have different scales, it might be beneficial to set different afol values for
different components by passing array_like with shape (n,) for afol. Default values are 1e-3
for rtol and 1e-6 for atol.

[array_like, sparse_matrix, callable or None, optional] Jacobian matrix of the right-hand side

of the system with respect to y, required by the ‘Radaw’, ‘BDF” and ‘LSODA’ method. The

Jacobian matrix has shape (n, n) and its element (i, j)isequaltod f£_i / d y_3j. There

are three ways to define the Jacobian:

* If array_like or sparse_matrix, the Jacobian is assumed to be constant. Not supported by
‘LSODA’.

* If callable, the Jacobian is assumed to depend on both t and y; it will be called as jac (t,
y), as necessary. For ‘Radau’ and ‘BDF’ methods, the return value might be a sparse
matrix.

¢ If None (default), the Jacobian will be approximated by finite differences.

It is generally recommended to provide the Jacobian rather than relying on a finite-difference

approximation.

jac_sparsity

[array_like, sparse matrix or None, optional] Defines a sparsity structure of the Jacobian
matrix for a finite- difference approximation. Its shape must be (n, n). This argument is
ignored if jac is not None. If the Jacobian has only few non-zero elements in each row,
providing the sparsity structure will greatly speed up the computations [10]. A zero entry
means that a corresponding element in the Jacobian is always zero. If None (default), the
Jacobian is assumed to be dense. Not supported by ‘LSODA’, see lband and uband instead.

Iband, uband

min_step

Returns

[int or None, optional] Parameters defining the bandwidth of the Jacobian for the TSODA’
method, i.e., jac[i, j] != 0 only for i - lband <= j <= i + uband.
Default is None. Setting these requires your jac routine to return the Jacobian in the packed
format: the returned array must have n columns and uband + lband + 1 rows in which
Jacobian diagonals are written. Specifically jac_packed[uband + 1 - J , j] =
jac[i, j].Thesameformatisusedin scipy.linalg.solve_banded (check for
an illustration). These parameters can be also used with jac=None to reduce the number
of Jacobian elements estimated by finite differences.

[float, optional] The minimum allowed step size for LSODA’ method. By default min_step
is zero.

Bunch object with the following fields defined:

t

y
sol

t_events

[ndarray, shape (n_points,)] Time points.

[ndarray, shape (n, n_points)] Values of the solution at z.

[0deSolution or None] Found solution as OdeSolution instance; None if
dense_output was set to False.

[list of ndarray or None] Contains for each event type a list of arrays at which an event of
that type event was detected. None if events was None.

3.3. API definition

473

SciPy Reference Guide, Release 1.8.0

y_events [list of ndarray or None] For each value of ¢_events, the corresponding value of the solution.
None if events was None.

nfev [int] Number of evaluations of the right-hand side.
njev [int] Number of evaluations of the Jacobian.

nlu [int] Number of LU decompositions.

status [int] Reason for algorithm termination:

* -1: Integration step failed.
* 0: The solver successfully reached the end of tspan.
¢ 1: A termination event occurred.
message [string] Human-readable description of the termination reason.
success [bool] True if the solver reached the interval end or a termination event occurred (status
>= 0).

References

(11, [21, [31, [4]), [5), (61, [7], [81, [9], [10], [11], [12], [13], [14]

Examples

Basic exponential decay showing automatically chosen time points.

>>> from scipy.integrate import solve_ivp
>>> def exponential_decay(t, y): return -0.5 * y

>>> sol = solve_ivp (exponential_decay, [0, 101, [2, 4, 8])

>>> print (sol.t)

[O. 0.11487653 1.26364188 3.06061781 4.81611105 6.57445806
8.33328988 10.]

>>> print (sol.y)

[[2. 1.88836035 1.06327177 0.43319312 0.18017253 0.07483045
0.03107158 0.01350781]
[4. 3.7767207 2.12654355 0.86638624 0.36034507 0.14966091
0.06214316 0.02701561]
[8. 7.5534414 4.25308709 1.73277247 0.72069014 0.29932181

0.12428631 0.05403123]]

Specifying points where the solution is desired.

>>> sol = solve_ivp (exponential_decay, [0, 101, [2, 4, 81,
t_eval=[0, 1, 2, 4, 101)

>>> print (sol.t)

[0 1 2 4 10]

>>> print (sol.y)

[[2. 1.21305369 0.73534021 0.27066736 0.01350938]
[4. 2.42610739 1.47068043 0.54133472 0.02701876]
[8. 4.85221478 2.94136085 1.08266944 0.05403753]]

Cannon fired upward with terminal event upon impact. The terminal and direction fields of an event are
applied by monkey patching a function. Here y [0] is position and y [1] is velocity. The projectile starts at
position 0 with velocity +10. Note that the integration never reaches t=100 because the event is terminal.

>>> def upward_cannon(t, y): return [y[1l], -0.5]
>>> def hit_ground(t, y): return y[0]

(continues on next page)

474

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

>>> hit_ground.terminal = True
>>> hit_ground.direction = -1
>>> sol = solve_ivp (upward_cannon, [0, 100], [0, 10], events=hit_ground)

>>> print (sol.t_events)

[array ([40.]1)1]

>>> print (sol.t)

[0.00000000e+00 9.99900010e-05 1.09989001e-03 1.10988901e-02
1.11088891e-01 1.11098890e+00 1.11099890e+01 4.00000000e+01]

Use dense_output and events to find position, which is 100, at the apex of the cannonball’s trajectory. Apex is not
defined as terminal, so both apex and hit_ground are found. There is no information at t=20, so the sol attribute is
used to evaluate the solution. The sol attribute is returned by setting dense_output=True. Alternatively, the
y_events attribute can be used to access the solution at the time of the event.

>>> def apex(t, y): return y[1]

>>> sol = solve_ivp (upward_cannon, [0, 1001, [0, 101,

C. events=(hit_ground, apex), dense_output=True)

>>> print (sol.t_events)
[array ([40.]), array ([20.])]

>>> print (sol.t)

[0.00000000e+00 9.99900010e-05 1.09989001e-03 1.10988901e-02
1.11088891e-01 1.11098890e+00 1.11099890e+01 4.00000000e+01]

>>> print (sol.sol(sol.t_events[1][0]))

[100. 0.]

>>> print (sol.y_events)

[array ([[-5.68434189e-14, —-1.00000000e+01]1]), array([[1.00000000e+02, 1.
—~77635684e-1511)]

As an example of a system with additional parameters, we’ll implement the Lotka-Volterra equations [12].

>>> def lotkavolterra(t, z, a, b, c, d):
X, VY = 2
return [a*x - b*x*y, —-c*y + d*x*y]

We pass in the parameter values a=1.5, b=1, c=3 and d=1 with the args argument.

>>> sol = solve_ivp(lotkavolterra, [0, 15], [10, 5], args=(1.5, 1, 3, 1),
dense_output=True)

Compute a dense solution and plot it.

>>> t = np.linspace (0, 15, 300)

>>> z = sol.sol (t)

>>> import matplotlib.pyplot as plt
>>> plt.plot(t, z.T)

>>> plt.xlabel ('t")

>>> plt.legend(['x", 'y'], shadow=True)
>>> plt.title('Lotka-Volterra System')
>>> plt.show ()

3.3. API definition 475

SciPy Reference Guide, Release 1.8.0

scipy.integrate.RK23

Lotka-Volterra System

12 — X
104 Y

A\ \.

0.0 2.5 5.0 7.5 10.0 12,5 15.0
t

class scipy.integrate.RK23 (fun, 10, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, vectorized=False,

first_step=None, **extraneous)

Explicit Runge-Kutta method of order 3(2).

This uses the Bogacki-Shampine pair of formulas [1]. The error is controlled assuming accuracy of the second-
order method, but steps are taken using the third-order accurate formula (local extrapolation is done). A cubic
Hermite polynomial is used for the dense output.

Can be applied in the complex domain.

Parameters

fun

t0

yo0
t_bound
first_step

max_step

rtol, atol

[callable] Right-hand side of the system. The calling signature is fun (t, y). Heret isa
scalar and there are two options for ndarray y. It can either have shape (n,), then fun must
return array_like with shape (n,). Or alternatively it can have shape (n, k), then fun must
return array_like with shape (n, k), i.e. each column corresponds to a single column in y.
The choice between the two options is determined by vectorized argument (see below).
[float] Initial time.

[array_like, shape (n,)] Initial state.

[float] Boundary time - the integration won’t continue beyond it. It also determines the di-
rection of the integration.

[float or None, optional] Initial step size. Default is None which means that the algorithm
should choose.

[float, optional] Maximum allowed step size. Default is np.inf, i.e., the step size is not
bounded and determined solely by the solver.

[float and array_like, optional] Relative and absolute tolerances. The solver keeps the local
error estimates less than atol + rtol * abs (y). Here rtol controls a relative accuracy
(number of correct digits), while arol controls absolute accuracy (number of correct decimal
places). To achieve the desired rzol, set atol to be lower than the lowest value that can be
expected from rtol * abs (y) so that rfol dominates the allowable error. If atol is larger
than rtol * abs (y) the number of correct digits is not guaranteed. Conversely, to
achieve the desired atol set rtol such that rtol * abs (y) is always lower than atol. If
components of y have different scales, it might be beneficial to set different afol values for
different components by passing array_like with shape (n,) for afol. Default values are 1e-3
for rtol and le-6 for atol.

476

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

vectorized [bool, optional] Whether fun is implemented in a vectorized fashion. Default is False.

References
[1]
Attributes
n [int] Number of equations.
status [string] Current status of the solver: ‘running’, ‘finished’ or ‘“failed’.
t_bound [float] Boundary time.
direction [float] Integration direction: +1 or -1.
t [float] Current time.
y [ndarray] Current state.
t_old [float] Previous time. None if no steps were made yet.
step_size [float] Size of the last successful step. None if no steps were made yet.
nfev [int] Number evaluations of the system’s right-hand side.
njev [int] Number of evaluations of the Jacobian. Is always O for this solver as it does not use the
Jacobian.
nlu [int] Number of LU decompositions. Is always O for this solver.
Methods
dense_output() Compute a local interpolant over the last successful
step.
step() Perform one integration step.

scipy.integrate.RK23.dense_output

RK23.dense_output ()
Compute a local interpolant over the last successful step.

Returns

sol [DenseOutput] Local interpolant over the last successful step.

scipy.integrate.RK23.step

RK23.step ()
Perform one integration step.

Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is
‘failed’ after the step was taken or None otherwise.

3.3. API definition 477

SciPy Reference Guide, Release 1.8.0

scipy.integrate.RK45

class scipy.integrate.RK45 (fun, 10, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, vectorized=False,

first_step=None, **extraneous)

Explicit Runge-Kutta method of order 5(4).

This uses the Dormand-Prince pair of formulas [1]. The error is controlled assuming accuracy of the fourth-order
method accuracy, but steps are taken using the fifth-order accurate formula (local extrapolation is done). A quartic
interpolation polynomial is used for the dense output [2].

Can be applied in the complex domain.

Parameters

fun

t0
yo
t_bound

first_step
max_step

rtol, atol

vectorized

References

[1], [2]
Attributes

n
status
t_bound
direction
t

y

t_old
step_size
nfev
njev

nlu

[callable] Right-hand side of the system. The calling signature is fun (t, y). Heret isa
scalar, and there are two options for the ndarray y: It can either have shape (n,); then fun
must return array_like with shape (n,). Alternatively it can have shape (n, k); then fun must
return an array_like with shape (n, k), i.e., each column corresponds to a single column in y.
The choice between the two options is determined by vectorized argument (see below).
[float] Initial time.

[array_like, shape (n,)] Initial state.

[float] Boundary time - the integration won’t continue beyond it. It also determines the di-
rection of the integration.

[float or None, optional] Initial step size. Default is None which means that the algorithm
should choose.

[float, optional] Maximum allowed step size. Default is np.inf, i.e., the step size is not
bounded and determined solely by the solver.

[float and array_like, optional] Relative and absolute tolerances. The solver keeps the local
error estimates less than atol + rtol * abs (y). Here rtol controls a relative accuracy
(number of correct digits), while arol controls absolute accuracy (number of correct decimal
places). To achieve the desired rrol, set atol to be lower than the lowest value that can be
expected from rtol * abs (y) so that rfol dominates the allowable error. If atol is larger
than rtol * abs (y) the number of correct digits is not guaranteed. Conversely, to
achieve the desired atol set rtol such that rtol * abs (y) is always lower than atol. If
components of y have different scales, it might be beneficial to set different afol values for
different components by passing array_like with shape (n,) for afol. Default values are 1e-3
for rtol and le-6 for atol.

[bool, optional] Whether fun is implemented in a vectorized fashion. Default is False.

[int] Number of equations.

[string] Current status of the solver: ‘running’, ‘finished’ or ‘“failed’.
float] Boundary time.

float] Integration direction: +1 or -1.

float] Current time.

ndarray] Current state.

[float] Previous time. None if no steps were made yet.

[float] Size of the last successful step. None if no steps were made yet.
[int] Number evaluations of the system’s right-hand side.

[int] Number of evaluations of the Jacobian. Is always O for this solver as it does not use the
Jacobian.

[int] Number of LU decompositions. Is always O for this solver.

[
[
[
[

478

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Methods

dense_output()

Compute a local interpolant over the last successful
step.

step()

Perform one integration step.

scipy.integrate.RK45.dense_output

RK45.dense_output ()
Compute a local interpolant over the last successful step.

Returns

sol

[DenseOutput] Local interpolant over the last successful step.

scipy.integrate.RK45.step

RK45.step ()

Perform one integration step.

Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is

‘failed’ after the step was taken or None otherwise.

scipy.integrate.DOP853

class scipy.integrate.DOP853 (fun, 10, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06,

vectorized=False, first_step=None, **extraneous)

Explicit Runge-Kutta method of order 8.

This is a Python implementation of “DOP853” algorithm originally written in Fortran [1], [2]. Note that this is not
a literate translation, but the algorithmic core and coefficients are the same.

Can be applied in the complex domain.

Parameters

fun

t0

yo0
t_bound
first_step

max_step

rtol, atol

[callable] Right-hand side of the system. The calling signature is fun (t, vy). Here, t is
a scalar, and there are two options for the ndarray y: It can either have shape (n,); then fun
must return array_like with shape (n,). Alternatively it can have shape (n, k); then fun must
return an array_like with shape (n, k), i.e. each column corresponds to a single column in y.
The choice between the two options is determined by vectorized argument (see below).
[float] Initial time.

[array_like, shape (n,)] Initial state.

[float] Boundary time - the integration won’t continue beyond it. It also determines the di-
rection of the integration.

[float or None, optional] Initial step size. Default is None which means that the algorithm
should choose.

[float, optional] Maximum allowed step size. Default is np.inf, i.e. the step size is not
bounded and determined solely by the solver.

[float and array_like, optional] Relative and absolute tolerances. The solver keeps the local
error estimates less than atol + rtol * abs (y). Here rtol controls a relative accuracy
(number of correct digits), while atol controls absolute accuracy (number of correct decimal
places). To achieve the desired rrol, set atol to be lower than the lowest value that can be

3.3. API definition

479

SciPy Reference Guide, Release 1.8.0

vectorized

References

[11,[2]
Attributes

n
status
t_bound
direction
t

y

t_old
step_size
nfev

njev

nlu

Methods

expected from rtol * abs (y) so that rfol dominates the allowable error. If afol is larger
than rtol * abs (y) the number of correct digits is not guaranteed. Conversely, to
achieve the desired atol set rtol such that rtol * abs (y) is always lower than atol. If
components of y have different scales, it might be beneficial to set different arol values for
different components by passing array_like with shape (n,) for afol. Default values are 1e-3
for rtol and 1e-6 for atol.

[bool, optional] Whether fun is implemented in a vectorized fashion. Default is False.

[int] Number of equations.

[string] Current status of the solver: ‘running’, ‘finished’ or ‘failed’.
float] Boundary time.

float] Integration direction: +1 or -1.

float] Current time.

ndarray] Current state.

[float] Previous time. None if no steps were made yet.

[float] Size of the last successful step. None if no steps were made yet.
[

[

[
[
[
[

int] Number evaluations of the system’s right-hand side.

int] Number of evaluations of the Jacobian. Is always O for this solver as it does not use the
Jacobian.

[int] Number of LU decompositions. Is always O for this solver.

dense_output()

Compute a local interpolant over the last successful
step.

step()

Perform one integration step.

scipy.integrate.DOP853.dense_output

DOP853.dense_output ()
Compute a local interpolant over the last successful step.

Returns

sol

[DenseOutput] Local interpolant over the last successful step.

480

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.integrate.DOP853.step

DOP853.step ()

Perform one integration step.

Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is

scipy.integrate.Radau

‘failed’ after the step was taken or None otherwise.

class scipy.integrate.Radau (fun, t0, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, jac=None,

Jjac_sparsity=None, vectorized=False, first_step=None, **extraneous)

Implicit Runge-Kutta method of Radau ITA family of order 5.

The implementation follows [1]. The error is controlled with a third-order accurate embedded formula. A cubic
polynomial which satisfies the collocation conditions is used for the dense output.

Parameters

fun

t0

yo0
t_bound
first_step

max_step

rtol, atol

jac

[callable] Right-hand side of the system. The calling signature is fun (t, y).Heretisa
scalar, and there are two options for the ndarray y: It can either have shape (n,); then fun
must return array_like with shape (n,). Alternatively it can have shape (n, k); then fun must
return an array_like with shape (n, k), i.e., each column corresponds to a single column in y.
The choice between the two options is determined by vectorized argument (see below). The
vectorized implementation allows a faster approximation of the Jacobian by finite differences
(required for this solver).
[float] Initial time.
[array_like, shape (n,)] Initial state.
[float] Boundary time - the integration won’t continue beyond it. It also determines the di-
rection of the integration.
[float or None, optional] Initial step size. Default is None which means that the algorithm
should choose.
[float, optional] Maximum allowed step size. Default is np.inf, i.e., the step size is not
bounded and determined solely by the solver.
[float and array_like, optional] Relative and absolute tolerances. The solver keeps the local
error estimates lessthanatol + rtol * abs (y). HHere rfol controls a relative accuracy
(number of correct digits), while afol controls absolute accuracy (number of correct decimal
places). To achieve the desired rzol, set atol to be lower than the lowest value that can be
expected from rtol * abs (y) so that rtol dominates the allowable error. If arol is larger
than rtol * abs (y) the number of correct digits is not guaranteed. Conversely, to
achieve the desired atol set rtol such that rtol * abs (y) is always lower than atol. If
components of y have different scales, it might be beneficial to set different atol values for
different components by passing array_like with shape (n,) for afol. Default values are 1e-3
for rtol and 1e-6 for atol.

[{None, array_like, sparse_matrix, callable}, optional] Jacobian matrix of the right-hand

side of the system with respect to y, required by this method. The Jacobian matrix has shape

(n, n) and its element (i, j)isequaltod f_i / d y_7j. There are three ways to define

the Jacobian:

* If array_like or sparse_matrix, the Jacobian is assumed to be constant.

* If callable, the Jacobian is assumed to depend on both t and y; it will be called as jac (t,
y) as necessary. For the ‘Radau’ and ‘BDF’ methods, the return value might be a sparse
matrix.

* If None (default), the Jacobian will be approximated by finite differences.

It is generally recommended to provide the Jacobian rather than relying on a finite-difference

approximation.

3.3. API definition

481

SciPy Reference Guide, Release 1.8.0

jac_sparsity

vectorized

References

[1]1, [2]
Attributes

n
status
t_bound
direction
t

y

t_old
step_size
nfev
njev

nlu

Methods

[{None, array_like, sparse matrix}, optional] Defines a sparsity structure of the Jacobian
matrix for a finite-difference approximation. Its shape must be (n, n). This argument is
ignored if jac is not None. If the Jacobian has only few non-zero elements in each row,
providing the sparsity structure will greatly speed up the computations [2]. A zero entry
means that a corresponding element in the Jacobian is always zero. If None (default), the
Jacobian is assumed to be dense.

[bool, optional] Whether fun is implemented in a vectorized fashion. Default is False.

[int] Number of equations.

[string] Current status of the solver: ‘running’, ‘finished’ or ‘“failed’.
[float] Boundary time.

[float] Integration direction: +1 or -1.

[float] Current time.

[ndarray] Current state.

[float] Previous time. None if no steps were made yet.

[float] Size of the last successful step. None if no steps were made yet.
[int] Number of evaluations of the right-hand side.

[int] Number of evaluations of the Jacobian.

[int] Number of LU decompositions.

dense_output()

Compute a local interpolant over the last successful
step.

step()

Perform one integration step.

scipy.integrate.Radau.dense_output

Radau.dense_output ()
Compute a local interpolant over the last successful step.

Returns

sol

[DenseOutput] Local interpolant over the last successful step.

482

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.integrate.Radau.step

Radau.step ()

Perform one integration step.

Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is

scipy.integrate.BDF

‘failed’ after the step was taken or None otherwise.

class scipy.integrate.BDF (fun, {0, y0, t_bound, max_step=inf, rtol=0.001, atol=1e-06, jac=None,

Jac_sparsity=None, vectorized=False, first_step=None, **extraneous)

Implicit method based on backward-differentiation formulas.

This is a variable order method with the order varying automatically from 1 to 5. The general framework of the
BDF algorithm is described in [1]. This class implements a quasi-constant step size as explained in [2]. The error
estimation strategy for the constant-step BDF is derived in [3]. An accuracy enhancement using modified formulas
(NDF) [2] is also implemented.

Can be applied in the complex domain.

Parameters

fun

t0

yo0
t_bound
first_step

max_step

rtol, atol

jac

[callable] Right-hand side of the system. The calling signature is fun (t, y).Heretisa
scalar, and there are two options for the ndarray y: It can either have shape (n,); then fun
must return array_like with shape (n,). Alternatively it can have shape (n, k); then fun must
return an array_like with shape (n, k), i.e. each column corresponds to a single column in y.
The choice between the two options is determined by vectorized argument (see below). The
vectorized implementation allows a faster approximation of the Jacobian by finite differences
(required for this solver).

[float] Initial time.

[array_like, shape (n,)] Initial state.

[float] Boundary time - the integration won’t continue beyond it. It also determines the di-
rection of the integration.

[float or None, optional] Initial step size. Default is None which means that the algorithm
should choose.

[float, optional] Maximum allowed step size. Default is np.inf, i.e., the step size is not
bounded and determined solely by the solver.

[float and array_like, optional] Relative and absolute tolerances. The solver keeps the local
error estimates less than atol + rtol * abs (y). Here rtol controls a relative accuracy
(number of correct digits), while arol controls absolute accuracy (number of correct decimal
places). To achieve the desired rtol, set atol to be lower than the lowest value that can be
expected from rtol * abs (y) so that rfol dominates the allowable error. If atol is larger
than rtol * abs (y) the number of correct digits is not guaranteed. Conversely, to
achieve the desired atol set rtol such that rtol * abs (y) is always lower than atol. If
components of y have different scales, it might be beneficial to set different afol values for
different components by passing array_like with shape (n,) for afol. Default values are 1e-3
for rtol and 1e-6 for atol.

[{None, array_like, sparse_matrix, callable}, optional] Jacobian matrix of the right-hand
side of the system with respect to y, required by this method. The Jacobian matrix has shape
(n, n) and its element (i, j)isequaltod f_i / d y_7j. There are three ways to define
the Jacobian:

o If array_like or sparse_matrix, the Jacobian is assumed to be constant.

3.3. API definition

483

SciPy Reference Guide, Release 1.8.0

* If callable, the Jacobian is assumed to depend on both t and y; it will be called as jac (t,
y) as necessary. For the ‘Radau’ and ‘BDF’ methods, the return value might be a sparse
matrix.
* If None (default), the Jacobian will be approximated by finite differences.
It is generally recommended to provide the Jacobian rather than relying on a finite-difference
approximation.
jac_sparsity
[{None, array_like, sparse matrix}, optional] Defines a sparsity structure of the Jacobian
matrix for a finite-difference approximation. Its shape must be (n, n). This argument is
ignored if jac is not None. If the Jacobian has only few non-zero elements in each row,
providing the sparsity structure will greatly speed up the computations [4]. A zero entry
means that a corresponding element in the Jacobian is always zero. If None (default), the
Jacobian is assumed to be dense.
vectorized [bool, optional] Whether fun is implemented in a vectorized fashion. Default is False.

References
(11, (21, (3], [4]
Attributes
n [int] Number of equations.
status [string] Current status of the solver: ‘running’, ‘finished’ or ‘“failed’.
t_bound [float] Boundary time.
direction [float] Integration direction: +1 or -1.
t [float] Current time.
y [ndarray] Current state.
t_old [float] Previous time. None if no steps were made yet.
step_size [float] Size of the last successful step. None if no steps were made yet.
nfev [int] Number of evaluations of the right-hand side.
njev [int] Number of evaluations of the Jacobian.
nlu [int] Number of LU decompositions.

Methods
dense_output() Compute a local interpolant over the last successful
step.
step() Perform one integration step.

scipy.integrate.BDF.dense_output

BDF .dense_output ()
Compute a local interpolant over the last successful step.

Returns

sol [DenseOutput] Local interpolant over the last successful step.

484 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.integrate.BDF.step

BDF.step ()

Perform one integration step.

Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is

scipy.integrate.LSODA

‘failed’ after the step was taken or None otherwise.

class scipy.integrate.LSODA (fun, 10, y0, t_bound, first_step=None, min_step=0.0, max_step=inf,

rtol=0.001, atol=1e-06, jac=None, Iband=None, uband=None,
vectorized=Fualse, **extraneous)

Adams/BDF method with automatic stiffness detection and switching.

This is a wrapper to the Fortran solver from ODEPACK [1]. It switches automatically between the nonstiff Adams
method and the stiff BDF method. The method was originally detailed in [2].

Parameters

fun

t0

yo0
t_bound
first_step
min_step

max_step

rtol, atol

jac

[callable] Right-hand side of the system. The calling signature is fun (t, y). Heret isa
scalar, and there are two options for the ndarray y: It can either have shape (n,); then fun
must return array_like with shape (n,). Alternatively it can have shape (n, k); then fun must
return an array_like with shape (n, k), i.e. each column corresponds to a single column in y.
The choice between the two options is determined by vectorized argument (see below). The
vectorized implementation allows a faster approximation of the Jacobian by finite differences
(required for this solver).

[float] Initial time.

[array_like, shape (n,)] Initial state.

[float] Boundary time - the integration won’t continue beyond it. It also determines the di-
rection of the integration.

[float or None, optional] Initial step size. Default is None which means that the algorithm
should choose.

[float, optional] Minimum allowed step size. Default is 0.0, i.e., the step size is not bounded
and determined solely by the solver.

[float, optional] Maximum allowed step size. Default is np.inf, i.e., the step size is not
bounded and determined solely by the solver.

[float and array_like, optional] Relative and absolute tolerances. The solver keeps the local
error estimates less than atol + rtol * abs (y). Here rtol controls a relative accuracy
(number of correct digits), while afol controls absolute accuracy (number of correct decimal
places). To achieve the desired rtol, set atol to be lower than the lowest value that can be
expected from rtol * abs (y) so that rtol dominates the allowable error. If atol is larger
than rtol * abs (y) the number of correct digits is not guaranteed. Conversely, to
achieve the desired atol set rtol such that rtol * abs (y) is always lower than atol. If
components of y have different scales, it might be beneficial to set different afol values for
different components by passing array_like with shape (n,) for afol. Default values are 1e-3
for rtol and 1e-6 for atol.

[None or callable, optional] Jacobian matrix of the right-hand side of the system with respect
to y. The Jacobian matrix has shape (n, n) and its element (i, j) isequaltod f_i / d
v_7J. The function will be called as jac (t, vy). If None (default), the Jacobian will
be approximated by finite differences. It is generally recommended to provide the Jacobian
rather than relying on a finite-difference approximation.

Iband, uband

[int or None] Parameters defining the bandwidth of the Jacobian, i.e., jac[i, j] !'= 0
only for i - lband <= j <= 1 + uband. Setting these requires your jac

3.3. API definition

485

SciPy Reference Guide, Release 1.8.0

vectorized

References

[1]1, [2]
Attributes

n
status
t_bound
direction
t

y

t_old
nfev

njev

Methods

routine to return the Jacobian in the packed format: the returned array must have n columns
and uband + 1lband + 1 rows in which Jacobian diagonals are written. Specifically
jac_packed[uband + i - 3 , J] = jac[i, 3J].The same format is used in
scipy.linalg.solve_banded (check for an illustration). These parameters can be
also used with jac=None to reduce the number of Jacobian elements estimated by finite
differences.

[bool, optional] Whether fun is implemented in a vectorized fashion. A vectorized imple-
mentation offers no advantages for this solver. Default is False.

[int] Number of equations.

[string] Current status of the solver: ‘running’, ‘finished’ or ‘“failed’.
[float] Boundary time.

[float] Integration direction: +1 or -1.

[float] Current time.

[ndarray] Current state.

[float] Previous time. None if no steps were made yet.

[int] Number of evaluations of the right-hand side.

[int] Number of evaluations of the Jacobian.

dense_output()

Compute a local interpolant over the last successful
step.

step()

Perform one integration step.

scipy.integrate.LSODA.dense_output

LSODA.dense_output ()
Compute a local interpolant over the last successful step.

Returns

sol

[DenseOutput] Local interpolant over the last successful step.

scipy.integrate.LSODA.step

LSODA.step ()

Perform one integration step.

Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is

‘failed’ after the step was taken or None otherwise.

486

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.integrate.OdeSolver

class scipy.integrate.OdeSolver (fun, 10, y0, t_bound, vectorized, support_complex=False)
Base class for ODE solvers.

In order to implement a new solver you need to follow the guidelines:

1.

A constructor must accept parameters presented in the base class (listed below) along with any other param-
eters specific to a solver.

. A constructor must accept arbitrary extraneous arguments * *ext raneous, but warn that these arguments

are irrelevant using common.warn_extraneous function. Do not pass these arguments to the base class.

. A solver must implement a private method _step_impl(self) which propagates a solver one step further. It

must return tuple (success, message), where success is a boolean indicating whether a step was
successful, and message is a string containing description of a failure if a step failed or None otherwise.

A solver must implement a private method _dense_output_impl(self), which returns a DenseOutput object
covering the last successful step.

A solver must have attributes listed below in Attributes section. Note that t_old and step_size are
updated automatically.

Use fun(self, t, y) method for the system rhs evaluation, this way the number of function evaluations (nfev)
will be tracked automatically.

For convenience, a base class provides fun_single(self, t, y) and fun_vectorized(self, t, y) for evaluating the
rhs in non-vectorized and vectorized fashions respectively (regardless of how fun from the constructor is
implemented). These calls don’t increment nfev.

If a solver uses a Jacobian matrix and LU decompositions, it should track the number of Jacobian evaluations
(njev) and the number of LU decompositions (nlu).

. By convention, the function evaluations used to compute a finite difference approximation of the Jacobian
should not be counted in nfev, thus use fun_single(self, t, y) or fun_vectorized(self, t, y) when computing a
finite difference approximation of the Jacobian.

Parameters
fun [callable] Right-hand side of the system. The calling signature is fun (t, y). Heret isa
scalar and there are two options for ndarray y. It can either have shape (n,), then fun must
return array_like with shape (n,). Or, alternatively, it can have shape (n, n_points), then fun
must return array_like with shape (n, n_points) (each column corresponds to a single column
in y). The choice between the two options is determined by vectorized argument (see below).
t0 [float] Initial time.
yo0 [array_like, shape (n,)] Initial state.
t_bound [float] Boundary time — the integration won’t continue beyond it. It also determines the
direction of the integration.
vectorized [bool] Whether fun is implemented in a vectorized fashion.
support_complex
[bool, optional] Whether integration in a complex domain should be supported. Generally
determined by a derived solver class capabilities. Default is False.
Attributes

n [int] Number of equations.
status [string] Current status of the solver: ‘running’, “finished’ or “failed’.
t_bound [float] Boundary time.
direction [float] Integration direction: +1 or -1.
t [float] Current time.
[

y ndarray] Current state.

3.3. API definition 487

SciPy Reference Guide, Release 1.8.0

t_old [float] Previous time. None if no steps were made yet.

step_size [float] Size of the last successful step. None if no steps were made yet.
nfev [int] Number of the system’s rhs evaluations.

njev [int] Number of the Jacobian evaluations.

nlu [int] Number of LU decompositions.

Methods
dense_output() Compute a local interpolant over the last successful
step.
step() Perform one integration step.

scipy.integrate.OdeSolver.dense_output

OdeSolver.dense_output ()
Compute a local interpolant over the last successful step.

Returns

sol [DenseOutput] Local interpolant over the last successful step.

scipy.integrate.OdeSolver.step

OdeSolver.step ()
Perform one integration step.

Returns

message [string or None] Report from the solver. Typically a reason for a failure if self.status is
‘failed’ after the step was taken or None otherwise.

scipy.integrate.DenseOutput

class scipy.integrate.DenseOutput (¢ old,t)
Base class for local interpolant over step made by an ODE solver.

It interpolates between 7_min and t_max (see Attributes below). Evaluation outside this interval is not forbidden,
but the accuracy is not guaranteed.

Attributes

t_min, t_max
[float] Time range of the interpolation.

488 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Methods

__call_ (t) Evaluate the interpolant.

scipy.integrate.DenseOutput.__call__

DenseOutput.__call__ (1)
Evaluate the interpolant.

Parameters
t [float or array_like with shape (n_points,)] Points to evaluate the solution at.
Returns
y [ndarray, shape (n,) or (n, n_points)] Computed values. Shape depends on whether ¢

was a scalar or a 1-D array.

scipy.integrate.OdeSolution

class scipy.integrate.OdeSolution (s, interpolants)
Continuous ODE solution.

It is organized as a collection of DenseOutput objects which represent local interpolants. It provides an algorithm
to select a right interpolant for each given point.

The interpolants cover the range between ¢_min and t_max (see Attributes below). Evaluation outside this interval
is not forbidden, but the accuracy is not guaranteed.

When evaluating at a breakpoint (one of the values in #s) a segment with the lower index is selected.

Parameters
ts [array_like, shape (n_segments + 1,)] Time instants between which local interpolants are
defined. Must be strictly increasing or decreasing (zero segment with two points is also
allowed).
interpolants
[list of DenseOutput with n_segments elements] Local interpolants. An i-th interpolant is
assumed to be defined between ts[i] and ts[i + 1].
Attributes

t_min, t_max
[float] Time range of the interpolation.

Methods

call (bt Evaluate the solution.

3.3. API definition 489

SciPy Reference Guide, Release 1.8.0

scipy.integrate.OdeSolution.__call__

OdeSolution.__call__ (1)
Evaluate the solution.

Parameters
t [float or array_like with shape (n_points,)] Points to evaluate at.
Returns
y [ndarray, shape (n_states,) or (n_states, n_points)] Computed values. Shape depends

on whether ¢ is a scalar or a 1-D array.

Oid API

These are the routines developed earlier for SciPy. They wrap older solvers implemented in Fortran (mostly ODEPACK).
While the interface to them is not particularly convenient and certain features are missing compared to the new API, the
solvers themselves are of good quality and work fast as compiled Fortran code. In some cases, it might be worth using
this old API.

odeint(func, y0, t[, args, Dfun, col_deriv, ...]) Integrate a system of ordinary differential equations.
ode(f[, jac]) A generic interface class to numeric integrators.
complex_ode(f[, jac]) A wrapper of ode for complex systems.

scipy.integrate.odeint

scipy.integrate.odeint (func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None,
rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0,
mxstep=0, mxhnil=0, mxordn=12, mxords=35, printmessg=0, tfirst=False)
Integrate a system of ordinary differential equations.

Note: For new code, use scipy.integrate.solve_ivp to solve a differential equation.

Solve a system of ordinary differential equations using Isoda from the FORTRAN library odepack.

Solves the initial value problem for stiff or non-stiff systems of first order ode-s:

dy/dt = func(y, t, ...) [or func(t, y, ...)]

where y can be a vector.

Note: By default, the required order of the first two arguments of func are in the opposite order of the argu-
ments in the system definition function used by the scipy.integrate. ode class and the function scipy.
integrate.solve_ivp. Touse a function with the signature func (t, vy, ...),theargument tfirst must
be set to True.

Parameters
func [callable(y, t, ...) or callable(t, y, ...)] Computes the derivative of y at t. If the signature is
callable(t, vy, ...),then the argument ffirst must be set True.
yo0 [array] Initial condition on y (can be a vector).

490 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

args
Dfun

col_deriv

full_output

printmessg

[array] A sequence of time points for which to solve for y. The initial value point should
be the first element of this sequence. This sequence must be monotonically increasing or
monotonically decreasing; repeated values are allowed.

[tuple, optional] Extra arguments to pass to function.

[callable(y, t, ...) or callable(t, y, ...)] Gradient (Jacobian) of func. If the signature is
callable(t, vy, ...),then the argument ffirst must be set True.

[bool, optional] True if Dfun defines derivatives down columns (faster), otherwise Dfun
should define derivatives across rows.

[bool, optional] True if to return a dictionary of optional outputs as the second output

[bool, optional] Whether to print the convergence message

tfirst: bool, optional

Returns

infodict

If True, the first two arguments of func (and Dfun, if given) must t, v instead of the default

vy, t.
New in version 1.1.0.

[array, shape (len(t), len(y0))] Array containing the value of y for each desired time in t, with
the initial value y0 in the first row.

[dict, only returned if full_output == True] Dictionary containing additional output informa-
tion

key | meaning

‘hu’ vector of step sizes successfully used for each time step

‘tcur’ | vector with the value of t reached for each time step (will always be at least as
large as the input times)

‘tolst” | vector of tolerance scale factors, greater than 1.0, computed when a request for
too much accuracy was detected

‘tsw’ | value of t at the time of the last method switch (given for each time step)

‘nst’ | cumulative number of time steps

cumulative number of function evaluations for each time step

nje cumulative number of jacobian evaluations for each time step

nqu’ | a vector of method orders for each successful step

‘imxer| index of the component of largest magnitude in the weighted local error vector
(e / ewt) on an error return, -1 otherwise

‘lenrw’| the length of the double work array required

‘leniw’| the length of integer work array required

‘mused’ a vector of method indicators for each successful time step: 1: adams (nonstiff),
2: bdf (stiff)

Other Parameters

ml, mu

rtol, atol

[int, optional] If either of these are not None or non-negative, then the Jacobian is assumed
to be banded. These give the number of lower and upper non-zero diagonals in this banded
matrix. For the banded case, Dfun should return a matrix whose rows contain the non-zero
bands (starting with the lowest diagonal). Thus, the return matrix jac from Dfun should have
shape (m1 + mu + 1, len(y0)) whenml >=0ormu >=0. The data in jac must
be stored such that jac[i - J + mu, 3] holds the derivative of the i'th equation
with respect to the 'j'th state variable. If “col_deriv is True, the transpose of this jac must be
returned.

[float, optional] The input parameters rfol and arol determine the error control performed by
the solver. The solver will control the vector, e, of estimated local errors in y, according to
an inequality of the form max-norm of (e / ewt) <= 1, whereewt is a vector of

3.3. API definition

491

SciPy Reference Guide, Release 1.8.0

positive error weights computed as ewt = rtol * abs(y) + atol. rtoland atol can
be either vectors the same length as y or scalars. Defaults to 1.49012e-8.

terit [ndarray, optional] Vector of critical points (e.g., singularities) where integration care should
be taken.

h0 [float, (O: solver-determined), optional] The step size to be attempted on the first step.

hmax float, (0: solver-determined), optional] The maximum absolute step size allowed.

[
hmin [float, (O: solver-determined), optional] The minimum absolute step size allowed.
ixpr [bool, optional] Whether to generate extra printing at method switches.
mxstep [int, (O: solver-determined), optional] Maximum number of (internally defined) steps al-
lowed for each integration point in t.

mxhnil [int, (O: solver-determined), optional] Maximum number of messages printed.
mxordn [int, (0: solver-determined), optional] Maximum order to be allowed for the non-stiff
(Adams) method.
mxords [int, (O: solver-determined), optional] Maximum order to be allowed for the stiff (BDF)
method.
See also:

solve_ivp

solve an initial value problem for a system of ODEs
ode

a more object-oriented integrator based on VODE
quad

for finding the area under a curve

Examples

The second order differential equation for the angle theta of a pendulum acted on by gravity with friction can be
written:

theta''(t) + b*theta'(t) + c*sin(theta(t)) = 0

where b and c are positive constants, and a prime (°) denotes a derivative. To solve this equation with odeint,
we must first convert it to a system of first order equations. By defining the angular velocity omega (t) =
theta' (t), we obtain the system:

theta' (t) = omega (t)
omega' (t) = —-b*omega(t) - c*sin(theta(t))

Let y be the vector [theta, omega]. We implement this system in Python as:

>>> def pend(y, t, b, c):
theta, omega = vy
dydt = [omega, -b*omega - c*np.sin(theta)]
return dydt

‘We assume the constants are b = 0.25 and ¢ = 5.0:

>>> b = 0.25
>>> ¢ = 5.0

492

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

For initial conditions, we assume the pendulum is nearly vertical with theta(0) = pi - 0.1, and is initially at rest, so
omega(0) = 0. Then the vector of initial conditions is

>>> y0 = [np.pi - 0.1, 0.0]

We will generate a solution at 101 evenly spaced samples in the interval 0 <=t <= 10. So our array of times is:

>>> t = np.linspace (0, 10, 101)

Call odeint to generate the solution. To pass the parameters b and c to pend, we give them to odeint using
the args argument.

>>> from scipy.integrate import odeint
>>> sol = odeint (pend, y0, t, args=(b, c))

The solution is an array with shape (101, 2). The first column is theta(t), and the second is omega(t). The following
code plots both components.

>>> import matplotlib.pyplot as plt

>>> plt.plot(t, sol[:, 0], 'b', label='theta(t)')
>>> plt.plot(t, soll:, 1], 'g', label='omega(t) ")
>>> plt.legend(loc="best")

>>> plt.xlabel ('t")

>>> plt.grid()

>>> plt.show()

2_
0_
_2-
— theta(t)
— omegalt
4l ga(t)
0 2 4 6 8 10
t

3.3. API definition 493

SciPy Reference Guide, Release 1.8.0

scipy.integrate.ode

class scipy.integrate.ode (f, jac=None)

A generic interface class to numeric integrators.
Solve an equation system ¥’ () = f(¢,y) with (optional) jac = df/dy.

Note: The first two arguments of £ (t, vy, ...) are in the opposite order of the arguments in the system
definition function used by scipy.integrate.odeint.

Parameters
f [callable £ (t, vy, *f_args)]Right-hand side of the differential equation. t is a scalar,
y.shape == (n,). f_args isset by calling set_f_params (*args). f should
return a scalar, array or list (not a tuple).
jac [callable jac (t, y, *Jjac_args), optional] Jacobian of the right-hand side, jac[1,
jl =d £[1] / d y[3j]. Jac_argsissetbycalling set_jac_params (*args).
See also:
odeint

an integrator with a simpler interface based on Isoda from ODEPACK
quad

for finding the area under a curve

Notes

Available integrators are listed below. They can be selected using the set_integrator method.
“vode”

Real-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient imple-
mentation. It provides implicit Adams method (for non-stiff problems) and a method based on backward
differentiation formulas (BDF) (for stiff problems).

Source: http://www.netlib.org/ode/vode.f

Warning: This integrator is not re-entrant. You cannot have two ode instances using the “vode” inte-
grator at the same time.

This integrator accepts the following parameters in set_integrator method of the ode class:

« atol : float or sequence absolute tolerance for solution

« rtol : float or sequence relative tolerance for solution

¢ lband : None or int

e uband : None or int Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+uband. Setting these
requires your jac routine to return the jacobian in packed format, jac_packed[i-j+uband, j] = jac[i,j].
The dimension of the matrix must be (Iband+uband+1, len(y)).

¢ method: ‘adams’ or ‘bdf’ Which solver to use, Adams (non-stiff) or BDF (stiff)

 with_jacobian : bool This option is only considered when the user has not supplied a Jacobian function
and has not indicated (by setting either band) that the Jacobian is banded. In this case, with_jacobian
specifies whether the iteration method of the ODE solver’s correction step is chord iteration with an
internally generated full Jacobian or functional iteration with no Jacobian.

* nsteps : int Maximum number of (internally defined) steps allowed during one call to the solver.

e first_step : float

e min_step : float

494

Chapter 3. SciPy API

http://www.netlib.org/ode/vode.f

SciPy Reference Guide, Release 1.8.0

» max_step : float Limits for the step sizes used by the integrator.
e order : int Maximum order used by the integrator, order <= 12 for Adams, <= 5 for BDF.

“zvode”

Complex-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient im-
plementation. It provides implicit Adams method (for non-stiff problems) and a method based on backward
differentiation formulas (BDF) (for stiff problems).

Source: http://www.netlib.org/ode/zvode.f

Warning: This integrator is not re-entrant. You cannot have two ode instances using the “zvode”
integrator at the same time.

This integrator accepts the same parameters in set__integrator as the “vode” solver.

Note: When using ZVODE for a stiff system, it should only be used for the case in which the function
f is analytic, that is, when each f(i) is an analytic function of each y(j). Analyticity means that the partial
derivative df(i)/dy(j) is a unique complex number, and this fact is critical in the way ZVODE solves the dense
or banded linear systems that arise in the stiff case. For a complex stiff ODE system in which f is not analytic,
ZVODE is likely to have convergence failures, and for this problem one should instead use DVODE on the
equivalent real system (in the real and imaginary parts of y).

“Isoda”

Real-valued Variable-coefficient Ordinary Differential Equation solver, with fixed-leading-coefficient imple-
mentation. It provides automatic method switching between implicit Adams method (for non-stiff problems)
and a method based on backward differentiation formulas (BDF) (for stiff problems).

Source: http://www.netlib.org/odepack

Warning: This integrator is not re-entrant. You cannot have two ode instances using the “Isoda”
integrator at the same time.

This integrator accepts the following parameters in set_integrator method of the ode class:
* atol : float or sequence absolute tolerance for solution
* rtol : float or sequence relative tolerance for solution
¢ lband : None or int
¢ uband : None or int Jacobian band width, jac[i,j] != 0 for i-lband <= j <=i+uband. Setting these requires
your jac routine to return the jacobian in packed format, jac_packed[i-j+uband, j] = jac[i,j].
 with_jacobian : bool Not used.
* nsteps : int Maximum number of (internally defined) steps allowed during one call to the solver.
e first_step : float
e min_step : float
» max_step : float Limits for the step sizes used by the integrator.
e max_order_ns : int Maximum order used in the nonstiff case (default 12).
e max_order_s : int Maximum order used in the stiff case (default 5).
* max_hnil : int Maximum number of messages reporting too small step size (t + h = t) (default 0)
* ixpr : int Whether to generate extra printing at method switches (default False).

“dopri5”

This is an explicit runge-kutta method of order (4)5 due to Dormand & Prince (with stepsize control and
dense output).
Authors:
E. Hairer and G. Wanner Universite de Geneve, Dept. de Mathematiques CH-1211 Geneve 24, Switzer-
land e-mail: ernst.hairer@math.unige.ch, gerhard.wanner @math.unige.ch

3.3. API definition 495

http://www.netlib.org/ode/zvode.f
http://www.netlib.org/odepack
mailto:ernst.hairer@math.unige.ch
mailto:gerhard.wanner@math.unige.ch

SciPy Reference Guide, Release 1.8.0

This code is described in [HNWO93].
This integrator accepts the following parameters in set_integrator() method of the ode class:
* atol : float or sequence absolute tolerance for solution
* rtol : float or sequence relative tolerance for solution
* nsteps : int Maximum number of (internally defined) steps allowed during one call to the solver.
e first_step : float
e max_step : float
* safety : float Safety factor on new step selection (default 0.9)
* ifactor : float
* dfactor : float Maximum factor to increase/decrease step size by in one step
* beta : float Beta parameter for stabilised step size control.
* verbosity : int Switch for printing messages (< 0 for no messages).

“dop853”

This is an explicit runge-kutta method of order 8(5,3) due to Dormand & Prince (with stepsize control and
dense output).
Options and references the same as “dopri5”.

References

[HNWO93]

Examples

A problem to integrate and the corresponding jacobian:

>>> from scipy.integrate import ode
>>>
>>> y0, t0 = [1.03, 2.0], O
>>>
>>> def f(t, y, argl):
return [lj*argl*y[0] + y[1], —-argl*y[1l]**2]
>>> def jac(t, y, argl):
return [[lj*argl, 11, [0, —argl*2*y[1]11]1]

The integration:

>>> r = method="bdf")

t0) .set_f_params(2.0) .set_jac_params (2.0)

ode (f, jac) .set_integrator('zvode',
>>> r.set_initial_value (yO0,
>>> tl1 = 10
>>> dt = 1
>>> while r.successful ()
print (r.t+dt,

and r.t < tl:
r.integrate(r.t+dt))

-0.71038232+0.237496533 O
[0.19098503-0.523592467 0.
[0.47153208+0.5270122935 0.
[-0.61905937+0.307262557
[0.02340997-0.614187993 0.
[
[
[

.52070105+0.445251417
.15986733-0.612344767

0 d oUW N e

[
0
0
0
.0
0
0
0

0
0

.4000027140.3

22222356+40.7
15384681+0.3

0.11764744+0.

09523835+0.7

0.06896565+0.]

0
0.58643071+0.3398193 0.08000018+0.73
- 0.06060616+0.]

(continues on next page)

496

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

(continued from previous page)

9.0 [0.64850462+0.150489827 0.05405414+0.73]
10.0 [-0.38404699+0.563822993) 0.04878055+0.73]

Attributes

t [float] Current time.
[ndarray] Current variable values.

Methods

get_return_code() Extracts the return code for the integration to enable
better control if the integration fails.

integrate(t], step, relax]) Find y=y(t), set y as an initial condition, and return y.

set_f_params(*args) Set extra parameters for user-supplied function f.

set_initial_value(yl,t]) Set initial conditions y(t) =y.

set_integrator(name, **integrator_params) Set integrator by name.

set_jac_params(*args) Set extra parameters for user-supplied function jac.

set_solout(solout) Set callable to be called at every successful integration
step.

successrful() Check if integration was successful.

scipy.integrate.ode.get_return_code

ode.get_return_code ()
Extracts the return code for the integration to enable better control if the integration fails.

In general, a return code > 0 implies success, while a return code < 0 implies failure.
Notes

This section describes possible return codes and their meaning, for available integrators that can be selected
by set_integrator method.

“vode”
Return Message
Code
2 Integration successful.
-1 Excess work done on this call. (Perhaps wrong MF.)
-2 Excess accuracy requested. (Tolerances too small.)
-3 Illegal input detected. (See printed message.)
-4 Repeated error test failures. (Check all input.)
-5 Repeated convergence failures. (Perhaps bad Jacobian supplied or wrong choice of MF or
tolerances.)
-6 Error weight became zero during problem. (Solution component i vanished, and ATOL
or ATOL(3) =0.)
“zvode”

3.3. API definition 497

SciPy Reference Guide, Release 1.8.0

Return Message

Code

2 Integration successful.

-1 Excess work done on this call. (Perhaps wrong MF.)

-2 Excess accuracy requested. (Tolerances too small.)

-3 Illegal input detected. (See printed message.)

-4 Repeated error test failures. (Check all input.)

-5 Repeated convergence failures. (Perhaps bad Jacobian supplied or wrong choice of MF or
tolerances.)

-6 Error weight became zero during problem. (Solution component i vanished, and ATOL
or ATOL() =0.)

“dopri5”
Return Code | Message
1 Integration successful.
2 Integration successful (interrupted by solout).
-1 Input is not consistent.
-2 Larger nsteps is needed.
-3 Step size becomes too small.
-4 Problem is probably stiff (interrupted).
“dop853”
Return Code | Message
1 Integration successful.
2 Integration successful (interrupted by solout).
-1 Input is not consistent.
-2 Larger nsteps is needed.
-3 Step size becomes too small.
-4 Problem is probably stiff (interrupted).
“Isoda”
Return Code | Message
2 Integration successful.
-1 Excess work done on this call (perhaps wrong Dfun type).
-2 Excess accuracy requested (tolerances too small).
-3 Illegal input detected (internal error).
-4 Repeated error test failures (internal error).
-5 Repeated convergence failures (perhaps bad Jacobian or tolerances).
-6 Error weight became zero during problem.
-7 Internal workspace insufficient to finish (internal error).

498 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.integrate.ode.integrate

ode.integrate (1, step=False, relax=False)
Find y=y(t), set y as an initial condition, and return y.

Parameters
t [float] The endpoint of the integration step.
step [bool] If True, and if the integrator supports the step method, then perform a single

integration step and return. This parameter is provided in order to expose internals of
the implementation, and should not be changed from its default value in most cases.

relax [bool] If True and if the integrator supports the run_relax method, then integrate until
t_1 >=t and return. relax is not referenced if step=True. This parameter is
provided in order to expose internals of the implementation, and should not be changed
from its default value in most cases.

Returns

y [float] The integrated value at t

scipy.integrate.ode.set_f_params

ode.set_f£f_params (*args)
Set extra parameters for user-supplied function f.

scipy.integrate.ode.set_initial_value

ode.set_initial_value (y, t=0.0)
Set initial conditions y(t) =y.

scipy.integrate.ode.set_integrator

ode.set_integrator (name, **integrator_params)
Set integrator by name.

Parameters

name [str] Name of the integrator.
integrator_params
Additional parameters for the integrator.

scipy.integrate.ode.set_jac_params

ode.set_jac_params (*args)
Set extra parameters for user-supplied function jac.

. API definition 499

SciPy Reference Guide, Release 1.8.0

scipy.integrate.ode.set_solout

ode.set_solout (solout)
Set callable to be called at every successful integration step.

Parameters

solout [callable] solout (t, y) is called at each internal integrator step, t is a scalar pro-
viding the current independent position y is the current soloution y . shape == (n,)
solout should return -1 to stop integration otherwise it should return None or 0

scipy.integrate.ode.successful

ode.successful ()
Check if integration was successful.

scipy.integrate.complex_ode

class scipy.integrate.complex_ode (f, jac=None)
A wrapper of ode for complex systems.

This functions similarly as ode, but re-maps a complex-valued equation system to a real-valued one before using
the integrators.

Parameters
f [callable £ (t, y, *f_args)]Rhsof the equation. tisascalar, y.shape == (n,).
f_args isset by calling set_f_params (*args).
jac [callable jac (t, y, *jac_args)]Jacobian of the rhs, jac[i,] = d £[i] /
d y[Jl. Jac_argsissetbycalling set_f_params (*args).
Examples

For usage examples, see ode.

Attributes
t [float] Current time.
[ndarray] Current variable values.
Methods

get_return_code() Extracts the return code for the integration to enable
better control if the integration fails.

integrate(t], step, relax]) Find y=y(t), set y as an initial condition, and return y.

set_f_params(¥*args) Set extra parameters for user-supplied function f.

set_initial_value(yl,t]) Set initial conditions y(t) =y.

set_integrator(name, **integrator_params) Set integrator by name.

set_jac_params(¥args) Set extra parameters for user-supplied function jac.

set_solout(solout) Set callable to be called at every successful integration
step.

continues on next page

500 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Table 39 - continued from previous page

successful()

Check if integration was successful.

scipy.integrate.complex_ode.get_return_code

complex_ode.get_return_code ()
Extracts the return code for the integration to enable better control if the integration fails.

In general, a return code > 0 implies success, while a return code < 0 implies failure.

Notes

This section describes possible return codes and their meaning, for available integrators that can be selected
by set_integrator method.

“vode”

Return
Code

Message

2

Integration successful.

1

Excess work done on this call. (Perhaps wrong MF.)

-2

Excess accuracy requested. (Tolerances too small.)

-3

Illegal input detected. (See printed message.)

4

Repeated error test failures. (Check all input.)

-5

Repeated convergence failures. (Perhaps bad Jacobian supplied or wrong choice of MF or
tolerances.)

-6

Error weight became zero during problem. (Solution component i vanished, and ATOL
or ATOL3G) =0.)

“zvode”

Return
Code

Message

2

Integration successful.

-1

Excess work done on this call. (Perhaps wrong MF.)

-2

Excess accuracy requested. (Tolerances too small.)

-3

Illegal input detected. (See printed message.)

4

Repeated error test failures. (Check all input.)

-5

Repeated convergence failures. (Perhaps bad Jacobian supplied or wrong choice of MF or
tolerances.)

-6

Error weight became zero during problem. (Solution component i vanished, and ATOL
or ATOL(i) =0.)

“dopri5”

3.3. API definition

501

SciPy Reference Guide, Release 1.8.0

Return Code | Message
1 Integration successful.
2 Integration successful (interrupted by solout).
-1 Input is not consistent.
-2 Larger nsteps is needed.
-3 Step size becomes too small.
-4 Problem is probably stiff (interrupted).
“dop853”
Return Code | Message
1 Integration successful.
2 Integration successful (interrupted by solout).
-1 Input is not consistent.
-2 Larger nsteps is needed.
-3 Step size becomes too small.
-4 Problem is probably stiff (interrupted).
“Isoda”
Return Code | Message
2 Integration successful.
-1 Excess work done on this call (perhaps wrong Dfun type).
-2 Excess accuracy requested (tolerances too small).
-3 Illegal input detected (internal error).
-4 Repeated error test failures (internal error).
-5 Repeated convergence failures (perhaps bad Jacobian or tolerances).
-6 Error weight became zero during problem.
-7 Internal workspace insufficient to finish (internal error).

scipy.integrate.complex_ode.integrate

complex_ode.integrate (t, step=False, relax=False)
Find y=y(t), set y as an initial condition, and return y.

Parameters
t [float] The endpoint of the integration step.
step [bool] If True, and if the integrator supports the step method, then perform a single

integration step and return. This parameter is provided in order to expose internals of
the implementation, and should not be changed from its default value in most cases.

relax [bool] If True and if the integrator supports the run_relax method, then integrate until
t_1 >=t and return. relax is not referenced if step=True. This parameter is
provided in order to expose internals of the implementation, and should not be changed
from its default value in most cases.

Returns

y [float] The integrated value at t

502 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.integrate.complex_ode.set_f_params

complex_ode.set_f_ params (*args)
Set extra parameters for user-supplied function f.

scipy.integrate.complex_ode.set_initial_value

complex_ode.set_initial_value (y, t=0.0)
Set initial conditions y(t) =y.

scipy.integrate.complex_ode.set_integrator

complex_ode.set_integrator (name, **integrator_params)
Set integrator by name.

Parameters

name [str] Name of the integrator
integrator_params
Additional parameters for the integrator.

scipy.integrate.complex_ode.set_jac_params

complex_ode.set_jac_params (*args)
Set extra parameters for user-supplied function jac.

scipy.integrate.complex_ode.set_solout

complex_ode.set_solout (solout)
Set callable to be called at every successful integration step.

Parameters

solout [callable] solout (t, vy) is called at each internal integrator step, t is a scalar pro-
viding the current independent position y is the current soloution y . shape == (n,)
solout should return -1 to stop integration otherwise it should return None or 0

scipy.integrate.complex_ode.successful

complex_ode.successful ()
Check if integration was successful.

. API definition 503

SciPy Reference Guide, Release 1.8.0

Solving boundary value problems for ODE systems

solve_bvp(fun, be, x, y[, p, S, fun_jac, ...]) Solve a boundary value problem for a system of ODEs.

scipy.integrate.solve_bvp

scipy.integrate.solve_bvp (fun, bc, x, y, p=None, S=None, fun_jac=None, bc_jac=None, tol=0.001,

max_nodes=1000, verbose=0, bc_tol=None)
Solve a boundary value problem for a system of ODEs.

This function numerically solves a first order system of ODEs subject to two-point boundary conditions:

dy / dx =

f , P) +S *y / (x-a), a<=x<=5b
be(y(a), vy

(x, vy
b), p) =0

Here x is a 1-D independent variable, y(x) is an N-D vector-valued function and p is a k-D vector of unknown
parameters which is to be found along with y(x). For the problem to be determined, there must be n + k boundary
conditions, i.e., bc must be an (n + k)-D function.

The last singular term on the right-hand side of the system is optional. It is defined by an n-by-n matrix S, such
that the solution must satisfy S y(a) = 0. This condition will be forced during iterations, so it must not contradict
boundary conditions. See [2] for the explanation how this term is handled when solving BVPs numerically.

Problems in a complex domain can be solved as well. In this case, y and p are considered to be complex, and f and
bc are assumed to be complex-valued functions, but x stays real. Note that f and bc must be complex differentiable
(satisfy Cauchy-Riemann equations [4]), otherwise you should rewrite your problem for real and imaginary parts
separately. To solve a problem in a complex domain, pass an initial guess for y with a complex data type (see
below).

Parameters

fun [callable] Right-hand side of the system. The calling signature is fun (x, y),or fun (x,
y, p) if parameters are present. All arguments are ndarray: x with shape (m,), y with
shape (n, m), meaning that y[:, 1] corresponds to x [1], and p with shape (k,). The
return value must be an array with shape (n, m) and with the same layout as y.

be [callable] Function evaluating residuals of the boundary conditions. The calling signature is
bc (ya, yb),orbc(ya, yb, p) if parameters are present. All arguments are ndarray:
ya and yb with shape (n,), and p with shape (k,). The return value must be an array with
shape (n + k,).

X [array_like, shape (m,)] Initial mesh. Must be a strictly increasing sequence of real numbers
with x[0]=aand x[-1]=b.
y [array_like, shape (n, m)] Initial guess for the function values at the mesh nodes, ith column

corresponds to x [i]. For problems in a complex domain pass y with a complex data type
(even if the initial guess is purely real).

P [array_like with shape (k,) or None, optional] Initial guess for the unknown parameters. If
None (default), it is assumed that the problem doesn’t depend on any parameters.
S [array_like with shape (n, n) or None] Matrix defining the singular term. If None (default),

the problem is solved without the singular term.
fun_jac [callable or None, optional] Function computing derivatives of f with respect to y and p.
The calling signature is fun_jac (x, vy),or fun_jac(x, vy, p) if parameters are
present. The return must contain 1 or 2 elements in the following order:
e df_dy : array_like with shape (n, n, m), where an element (i, j, q) equals to d f_i(x_q,
y_q,p)/d (y_q)_j.
e df_dp : array_like with shape (n, k, m), where an element (i, j, q) equals to d f_i(x_q,

y_q,p)/dp_j.

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

bc_jac

tol

max_nodes

verbose

bc_tol

Returns

Here q numbers nodes at which x and y are defined, whereas i and j number vector compo-

nents. If the problem is solved without unknown parameters, df _dp should not be returned.

If fun_jac is None (default), the derivatives will be estimated by the forward finite differences.

[callable or None, optional] Function computing derivatives of bc with respect to ya, yb, and

p- The calling signature is bc_jac (ya, yb),orbc_jac(ya, yb, p) if parameters

are present. The return must contain 2 or 3 elements in the following order:

e dbc_dya : array_like with shape (n, n), where an element (i, j) equals to d bc_i(ya, yb, p)
/dya_j.

* dbc_dyb : array_like with shape (n, n), where an element (i, j) equals to d bc_i(ya, yb, p)
/dyb_j.

» dbc_dp : array_like with shape (n, k), where an element (i, j) equals to d bc_i(ya, yb, p) /
dp_j.

If the problem is solved without unknown parameters, dbc_dp should not be returned.

If bc_jac is None (default), the derivatives will be estimated by the forward finite differences.

[float, optional] Desired tolerance of the solution. If we define r = y' - f(x, vy),

where y is the found solution, then the solver tries to achieve on each mesh interval norm (r

/ (1 + abs(f)) < tol, where normis estimated in a root mean squared sense (using

a numerical quadrature formula). Default is le-3.

[int, optional] Maximum allowed number of the mesh nodes. If exceeded, the algorithm
terminates. Default is 1000.

[{0, 1, 2}, optional] Level of algorithm’s verbosity:

* 0 (default) : work silently.

1 : display a termination report.

e 2: display progress during iterations.

[float, optional] Desired absolute tolerance for the boundary condition residuals: bc value
should satisfy abs (bc) < bc_tol component-wise. Equals to fol by default. Up to 10
iterations are allowed to achieve this tolerance.

Bunch object with the following fields defined:

sol

p

X

y
yp

[PPoly] Found solution for y as scipy.interpolate.PPoly instance, a Cl continu-
ous cubic spline.

[ndarray or None, shape (k,)] Found parameters. None, if the parameters were not present
in the problem.

[ndarray, shape (m,)] Nodes of the final mesh.

[ndarray, shape (n, m)] Solution values at the mesh nodes.

[ndarray, shape (n, m)] Solution derivatives at the mesh nodes.

rms_residuals

niter
status

message
success

[ndarray, shape (m - 1,)] RMS values of the relative residuals over each mesh interval (see
the description of fol parameter).

[int] Number of completed iterations.

[int] Reason for algorithm termination:

* 0: The algorithm converged to the desired accuracy.

* 1: The maximum number of mesh nodes is exceeded.

» 2: A singular Jacobian encountered when solving the collocation system.

string] Verbal description of the termination reason.

bool] True if the algorithm converged to the desired accuracy (status=0).

— —

3.3. API definition

505

SciPy Reference Guide, Release 1.8.0

Notes

This function implements a 4th order collocation algorithm with the control of residuals similar to [1]. A collocation
system is solved by a damped Newton method with an affine-invariant criterion function as described in [3].

Note that in [1] integral residuals are defined without normalization by interval lengths. So, their definition is
different by a multiplier of h**0.5 (h is an interval length) from the definition used here.

New in version 0.18.0.

References

(11, [2], [31, [4]

Examples

In the first example, we solve Bratu’s problem:

y''" + k * exp(y) = 0
y(0) = y(1) =0
fork =1.

We rewrite the equation as a first-order system and implement its right-hand side evaluation:

yl' = v2
y2' = —exp(yl)

>>> def fun(x, y):
return np.vstack ((y[1], —-np.exp(y[0])))

Implement evaluation of the boundary condition residuals:

>>> def bc(ya, yb):
return np.array([yal[0], yb[0]])

Define the initial mesh with 5 nodes:

>>> x = np.linspace (0, 1, 5)

This problem is known to have two solutions. To obtain both of them, we use two different initial guesses for y.
We denote them by subscripts a and b.

>>> y_a = np.zeros((2, x.size))
>>> y_b = np.zeros((2, x.size))
>>> y_b[0] = 3

Now we are ready to run the solver.

>>> from scipy.integrate import solve_bvp
>>> res_a = solve_bvp (fun, bc, x, y_a)
>>> res_b = solve_bvp (fun, bc, x, y_b)

Let’s plot the two found solutions. We take an advantage of having the solution in a spline form to produce a smooth
plot.

506

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

>>> x_plot = np.linspace(0, 1, 100)

>>> y_plot_a = res_a.sol(x_plot) [0]

>>> y_plot_b = res_b.sol(x_plot) [0]

>>> import matplotlib.pyplot as plt

>>> plt.plot (x_plot, y_plot_a, label='y_a')
>>> plt.plot(x_plot, y_plot_b, label='y_b'")
>>> plt.legend()

>>> plt.xlabel ("x")

>>> plt.ylabel("y")

>>> plt.show ()

4 T — y_a
y b
3 4
> 2 4
1 4
0qQ —
0.0 0.2 0.4 0.6 0.8 1.0
X

We see that the two solutions have similar shape, but differ in scale significantly.

In the second example, we solve a simple Sturm-Liouville problem:

y'' o+ k**2 %y = 0
y(0) = y(1) =0

It is known that a non-trivial solution y = A * sin(k * x) is possible for k = pi * n, where n is an integer. To establish
the normalization constant A = 1 we add a boundary condition:

y'(0) =k

Again, we rewrite our equation as a first-order system and implement its right-hand side evaluation:

yl' = y2
y2' = —k**2 * yi

>>> def fun(x, y, p):
k = pl0]
return np.vstack ((y[1], -k**2 * y[0]))

Note that parameters p are passed as a vector (with one element in our case).

Implement the boundary conditions:

3.3. API definition 507

SciPy Reference Guide, Release 1.8.0

>>> def bc(ya, yb, p):
k = pl[0]
return np.array([ya[0], yb[0], yall]l - kI)

Set up the initial mesh and guess for y. We aim to find the solution for k = 2 * pi, to achieve that we set values of
y to approximately follow sin(2 * pi * x):

>>> x = np.linspace (0, 1, 5)

>>> y = np.zeros((2, x.size))
>>> y[0, 1] =1
>>> y[0, 3] = -1

Run the solver with 6 as an initial guess for k.

>>> sol = solve_bvp (fun, bc, x, y, p=1[61])

We see that the found k is approximately correct:

>>> s0l.p[0]
6.28329460046

And, finally, plot the solution to see the anticipated sinusoid:

>>> x_plot = np.linspace(0, 1, 100)
>>> y_plot = sol.sol(x_plot) [0]

>>> plt.plot (x_plot, y_plot)

>>> plt.xlabel ("x")

>>> plt.ylabel ("y")

>>> plt.show()

1.0 A

0.5 A

> 0.0 A

—0.5 ~

—1.0 A

0.0 0.2 0.4 0.6 0.8 1.0

508

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

3.3.8 Interpolation (scipy.interpolate)

Sub-package for objects used in interpolation.

As listed below, this sub-package contains spline functions and classes, 1-D and multidimensional (univariate and multi-
variate) interpolation classes, Lagrange and Taylor polynomial interpolators, and wrappers for FITPACK and DFITPACK

functions.

Univariate interpolation

interpld(x, yl, kind, axis, copy, ...])

Interpolate a 1-D function.

BarycentricInterpolator(xil, yi, axis])

The interpolating polynomial for a set of points

KroghInterpolator(xi, yil, axis])

Interpolating polynomial for a set of points.

barycentric_interpolate(xi,yi, X[, axis])

Convenience function for polynomial interpolation.

krogh_interpolate(xi, yi, X[, der, axis])

Convenience function for polynomial interpolation.

pchip_interpolate(xi,yi, X[, der, axis])

Convenience function for pchip interpolation.

CubicHermiteSpline(X,y, dydx[, axis, ...])

Piecewise-cubic interpolator matching values and first
derivatives.

PchipInterpolator(X,yl, axis, extrapolate])

PCHIP 1-D monotonic cubic interpolation.

AkimalDInterpolator(x,y[, axis])

Akima interpolator

CubicSpline(X,y[, axis, bc_type, extrapolate]) Cubic spline data interpolator.

PPoly(c, X[, extrapolate, axis]) Piecewise polynomial in terms of coefficients and break-
points

BPoly(c, x[, extrapolate, axis]) Piecewise polynomial in terms of coefficients and break-
points.

scipy.interpolate.interpid

class scipy.interpolate.interpld (x, Yy, kind='"linear', axis=- 1, copy=True, bounds_error=None,
fill_value=nan, assume_sorted=False)
Interpolate a 1-D function.

x and y are arrays of values used to approximate some function f: y = f (x). This class returns a function whose
call method uses interpolation to find the value of new points.

Parameters

X [(N,) array_like] A 1-D array of real values.

y [(...,N,...) array_like] A N-D array of real values. The length of y along the interpolation
axis must be equal to the length of x.

kind [str or int, optional] Specifies the kind of interpolation as a string or as an integer specify-
ing the order of the spline interpolator to use. The string has to be one of ‘linear’, ‘near-
est’, ‘nearest-up’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, or ‘next’. ‘zero’, ‘slinear’,
‘quadratic’ and ‘cubic’ refer to a spline interpolation of zeroth, first, second or third order;
‘previous’ and ‘next’ simply return the previous or next value of the point; ‘nearest-up’ and
‘nearest’ differ when interpolating half-integers (e.g. 0.5, 1.5) in that ‘nearest-up’ rounds up
and ‘nearest’ rounds down. Default is ‘linear’.

axis [int, optional] Specifies the axis of y along which to interpolate. Interpolation defaults to the
last axis of y.

copy [bool, optional] If True, the class makes internal copies of x and y. If False, references to x

and y are used. The default is to copy.

bounds_error
[bool, optional] If True, a ValueError is raised any time interpolation is attempted on
a value outside of the range of x (where extrapolation is necessary). If False, out

3.3. API definition 509

http://www.netlib.org/dierckx/

SciPy Reference Guide, Release 1.8.0

of bounds values are assigned £fill_value. By default, an error is raised unless
fill_value="extrapolate".
fill_value [array-like or (array-like, array_like) or “extrapolate”, optional]

* if a ndarray (or float), this value will be used to fill in for requested points outside of
the data range. If not provided, then the default is NaN. The array-like must broadcast
properly to the dimensions of the non-interpolation axes.

* If a two-element tuple, then the first element is used as a fill value for x_new < x[0] and
the second element is used for x_new > x[-1]. Anything that is not a 2-element tuple
(e.g., list or ndarray, regardless of shape) is taken to be a single array-like argument meant
to be used for both bounds as below, above = fill _value, fill_value.
Using a two-element tuple or ndarray requires bounds_error=False.

New in version 0.17.0.

* If “extrapolate”, then points outside the data range will be extrapolated.

New in version 0.17.0.
assume_sorted

[bool, optional] If False, values of x can be in any order and they are sorted first. If True, x

has to be an array of monotonically increasing values.

See also:

splrep, splev

Spline interpolation/smoothing based on FITPACK.
UnivariateSpline

An object-oriented wrapper of the FITPACK routines.
interp2d

2-D interpolation

Notes

Calling interpld with NaNs present in input values results in undefined behaviour.
Input values x and y must be convertible to float values like int or float.

If the values in x are not unique, the resulting behavior is undefined and specific to the choice of kind, i.e., changing
kind will change the behavior for duplicates.

Examples

>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate
>>> x = np.arange (0, 10)

>>> y = np.exp(-x/3.0)

>>> f = interpolate.interpld(x, V)
>>> xnew = np.arange(0, 9, 0.1)
>>> ynew = f (xnew) # use interpolation function returned by " interpld’

>>> plt.plot(x, vy, 'o', xnew, ynew, '—'")
>>> plt.show ()

Attributes

510

Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

104 @
0.8 A
Q
0.6 A
]
0 4 N)
N
0.2 N
e
-9
T T T T T
0 2 4 6 8
fill_value
The fill value.
Methods
call (x) Evaluate the interpolant
scipy.interpolate.interpid.__call__
interpld.__call__ (x)
Evaluate the interpolant
Parameters
X [array_like] Points to evaluate the interpolant at.
Returns
y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis
in the original array with the shape of x.
Notes
Input values x must be convertible to float values like int or float.
3.3. API definition 511

SciPy Reference Guide, Release 1.8.0

scipy.interpolate.Barycentriclnterpolator

class scipy.interpolate.BarycentricInterpolator (xi, yi=None, axis=0)
The interpolating polynomial for a set of points

Constructs a polynomial that passes through a given set of points. Allows evaluation of the polynomial, efficient
changing of the y values to be interpolated, and updating by adding more x values. For reasons of numerical
stability, this function does not compute the coefficients of the polynomial.

The values yi need to be provided before the function is evaluated, but none of the preprocessing depends on them,
so rapid updates are possible.

Parameters
xi [array_like] 1-D array of x coordinates of the points the polynomial should pass through
yi [array_like, optional] The y coordinates of the points the polynomial should pass through. If
None, the y values will be supplied later via the set_y method.
axis [int, optional] Axis in the yi array corresponding to the x-coordinate values.
Notes

This class uses a “barycentric interpolation” method that treats the problem as a special case of rational func-
tion interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation, unless
the x coordinates are chosen very carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice - polynomial
interpolation itself is a very ill-conditioned process due to the Runge phenomenon.

Based on Berrut and Trefethen 2004, “Barycentric Lagrange Interpolation”.

Attributes
dtype
Methods
_call__(x) Evaluate the interpolating polynomial at the points x
add_xi(xi[, yi]) Add more x values to the set to be interpolated
set_yi(yil, axis]) Update the y values to be interpolated

scipy.interpolate.Barycentriclnterpolator.__call__

BarycentricInterpolator.__call__ (x)
Evaluate the interpolating polynomial at the points x

Parameters
X [array_like] Points to evaluate the interpolant at.
Returns
y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis

in the original array with the shape of x.

512 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

Notes

Currently the code computes an outer product between x and the weights, that is, it constructs an intermediate
array of size N by len(x), where N is the degree of the polynomial.

scipy.interpolate.Barycentriclnterpolator.add_xi

BarycentricInterpolator.add_xi (xi, yi=None)
Add more x values to the set to be interpolated

The barycentric interpolation algorithm allows easy updating by adding more points for the polynomial to

pass through.
Parameters
xi [array_like] The x coordinates of the points that the polynomial should pass through.
yi [array_like, optional] The y coordinates of the points the polynomial should pass

through. Should have shape (xi.size, R);if R> 1 then the polynomial is vector-
valued. If yi is not given, the y values will be supplied later. yi should be given if and
only if the interpolator has y values specified.

scipy.interpolate.Barycentriclnterpolator.set_yi

BarycentricInterpolator.set_yi (yi, axis=None)
Update the y values to be interpolated

The barycentric interpolation algorithm requires the calculation of weights, but these depend only on the xi.
The yi can be changed at any time.

Parameters
yi [array_like] The y coordinates of the points the polynomial should pass through. If
None, the y values will be supplied later.
axis [int, optional] Axis in the yi array corresponding to the x-coordinate values.

scipy.interpolate.Kroghinterpolator

class scipy.interpolate.KroghInterpolator (xi, yi, axis=0)
Interpolating polynomial for a set of points.

The polynomial passes through all the pairs (xi,yi). One may additionally specify a number of derivatives at each
point xi; this is done by repeating the value xi and specifying the derivatives as successive yi values.

Allows evaluation of the polynomial and all its derivatives. For reasons of numerical stability, this function does
not compute the coefficients of the polynomial, although they can be obtained by evaluating all the derivatives.

Parameters
xi [array_like, length N] Known x-coordinates. Must be sorted in increasing order.
yi [array_like] Known y-coordinates. When an xi occurs two or more times in a row, the cor-
responding yi’s represent derivative values.
axis [int, optional] Axis in the yi array corresponding to the x-coordinate values.

3.3. API definition 513

SciPy Reference Guide, Release 1.8.0

Notes

Be aware that the algorithms implemented here are not necessarily the most numerically stable known. Moreover,
even in a world of exact computation, unless the x coordinates are chosen very carefully - Chebyshev zeros (e.g.,
cos(i*pi/n)) are a good choice - polynomial interpolation itself is a very ill-conditioned process due to the Runge

phenomenon. In general, even with well-chosen x values, degrees higher than about thirty cause problems with
numerical instability in this code.

Based on [1].

References

(1]

Examples

To produce a polynomial that is zero at O and 1 and has derivative 2 at 0, call

>>> from scipy.interpolate import KroghInterpolator
>>> KroghInterpolator ([0,0,1]1,1[0,2,01)

This constructs the quadratic 2*X**2-2*X. The derivative condition is indicated by the repeated zero in the xi
array; the corresponding yi values are 0, the function value, and 2, the derivative value.

For another example, given xi, yi, and a derivative ypi for each point, appropriate arrays can be constructed as:

>>> rng = np.random.default_rng()

>>> xi = np.linspace (0, 1, 5)

>>> yi, ypli = rng.random((2, 5))

>>> xi_k, yi_k = np.repeat(xi, 2), np.ravel(np.dstack((yi,ypi)))
>>> KroghInterpolator (xi_k, yi_k)

To produce a vector-valued polynomial, supply a higher-dimensional array for yi:

>>> KroghInterpolator ([0,1],[[2,3],[4,511)

This constructs a linear polynomial giving (2,3) at 0 and (4,5) at 1.

Attributes
dtype
Methods
_call__ (x) Evaluate the interpolant
derivative(x[, der]) Evaluate one derivative of the polynomial at the point
X
derivatives(x[, der]) Evaluate many derivatives of the polynomial at the
point x

514 Chapter 3. SciPy API

SciPy Reference Guide, Release 1.8.0

scipy.interpolate.Kroghinterpolator.__call__

KroghInterpolator.__call__ (x)
Evaluate the interpolant

Parameters
X [array_like] Points to evaluate the interpolant at.
Returns
y [array_like] Interpolated values. Shape is determined by replacing the interpolation axis
in the original array with the shape of x.
Notes

Input values x must be convertible to float values like int or float.

scipy.interpolate.Kroghlnterpolator.derivative

KroghInterpolator.derivative (x, der=1)
Evaluate one derivative of the polynomial at the point x

Parameters
X [array_like] Point or points at which to evaluate the derivatives
der [integer, optional] Which derivative to extract. This number includes the function value
as Oth derivative.
Returns
d [ndarray] Derivative interpolated at the x-points. Shape of d is determined by replacing
the interpolation axis in the original array with the shape of x.
Notes

This is computed by evaluating all derivatives up to the desired one (using self.derivatives()) and then dis-
carding the rest.

scipy.interpolate.Kroghinterpolator.derivatives

KroghInterpolator.derivatives (x, der=None)
Evaluate many derivatives of the polynomial at the point x

Produce an array of all derivative values at the point x.

Parameters
X [array_like] Point or points at which to evaluate the derivatives
der [int or None, optional] How many derivatives to extract; None for all potentially nonzero
derivatives (that is a number equal to the number of points). This number includes the
function value as Oth derivative.
Returns

3.3. API definition 515

SciPy Reference Guide, Release 1.8.0

d [ndarray] Array with derivatives; d[j] contains the jth derivative. Shape of d[j] is deter-
mined by replacing the interpolation axis in the original array with the shape of x.

Examples

>>> from scipy.interpolate import KroghInterpolator
>>> KroghInterpolator([0,0,0]1,[1,2,3]).derivatives(0)
array ([1.0,2.0,3.01)
>>> KroghInterpolator([0,0,0]1,([1,2,3]) .derivatives([0,0])
array([[1.0,1.07,

[2.0,2.071,

[3.0,3.011)

scipy.interpolate.barycentric_interpolate

scipy.interpolate.barycentric_interpolate (xi, yi, x, axis=0)
Convenience function for polynomial interpolation.

Constructs a polynomial that passes through a given set of points, then evaluates the polynomial. For reasons of
numerical stability, this function does not comput