A truncated discrete exponential discrete random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters :

x : array-like


q : array-like

lower or upper tail probability

lamda, N : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments )

moments : str, optional

composed of letters [‘mvsk’] specifying which moments to compute where ‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (default=’mv’)

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a “frozen” continuous RV object: :

rv = boltzmann(lamda, N, loc=0, scale=1) :

  • Frozen RV object with the same methods but holding the given shape, location, and scale fixed.


Boltzmann (Truncated Discrete Exponential)

boltzmann.pmf(k,b,N) = (1-exp(-b))*exp(-b*k)/(1-exp(-b*N)) for k=0,..,N-1


>>> import matplotlib.pyplot as plt
>>> numargs = boltzmann.numargs
>>> [ lamda, N ] = Replace with reasonable value * numargs
>>> rv = boltzmann(lamda, N)

Display frozen pdf

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = boltzmann.cdf(x, lamda, N)
>>> h = plt.semilogy(np.abs(x - boltzmann.ppf(prb, lamda, N)) + 1e-20)

Random number generation

>>> R = boltzmann.rvs(lamda, N, size=100)

(Source code)


rvs(lamda, N, loc=0, scale=1, size=1) Random variates.
pdf(x, lamda, N, loc=0, scale=1) Probability density function.
cdf(x, lamda, N, loc=0, scale=1) Cumulative density function.
sf(x, lamda, N, loc=0, scale=1) Survival function (1-cdf — sometimes more accurate).
ppf(q, lamda, N, loc=0, scale=1) Percent point function (inverse of cdf — percentiles).
isf(q, lamda, N, loc=0, scale=1) Inverse survival function (inverse of sf).
stats(lamda, N, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(lamda, N, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, lamda, N, loc=0, scale=1) Parameter estimates for generic data.

Previous topic


Next topic


This Page