scipy.interpolate.splint(a, b, tck, full_output=0)

Evaluate the definite integral of a B-spline.

Given the knots and coefficients of a B-spline, evaluate the definite integral of the smoothing polynomial between two given points.

Parameters :

a, b – The end-points of the integration interval. :

tck – A length 3 sequence describing the given spline (See splev). :

full_output – Non-zero to return optional output. :

Returns :

integral – The resulting integral. :

wrk – An array containing the integrals of the :

normalized B-splines defined on the set of knots.


[R8]P.W. Gaffney, The calculation of indefinite integrals of b-splines”, J. Inst. Maths Applics, 17, p.37-41, 1976.
[R9]P. Dierckx, “Curve and surface fitting with splines”, Monographs on Numerical Analysis, Oxford University Press, 1993.

Previous topic


Next topic


This Page