Optimization (optimize) ======================= .. sectionauthor:: Travis E. Oliphant .. currentmodule:: scipy.optimize There are several classical optimization algorithms provided by SciPy in the :mod:`scipy.optimize` package. An overview of the module is available using :func:`help` (or :func:`pydoc.help`): .. literalinclude:: examples/5-1 The first four algorithms are unconstrained minimization algorithms (:func:`fmin`: Nelder-Mead simplex, :func:`fmin_bfgs`: BFGS, :func:`fmin_ncg`: Newton Conjugate Gradient, and :func:`leastsq`: Levenburg-Marquardt). The last algorithm actually finds the roots of a general function of possibly many variables. It is included in the optimization package because at the (non-boundary) extreme points of a function, the gradient is equal to zero. Nelder-Mead Simplex algorithm (:func:`fmin`) -------------------------------------------- The simplex algorithm is probably the simplest way to minimize a fairly well-behaved function. The simplex algorithm requires only function evaluations and is a good choice for simple minimization problems. However, because it does not use any gradient evaluations, it may take longer to find the minimum. To demonstrate the minimization function consider the problem of minimizing the Rosenbrock function of :math:`N` variables: .. math:: :nowrap: \[ f\left(\mathbf{x}\right)=\sum_{i=1}^{N-1}100\left(x_{i}-x_{i-1}^{2}\right)^{2}+\left(1-x_{i-1}\right)^{2}.\] The minimum value of this function is 0 which is achieved when :math:`x_{i}=1.` This minimum can be found using the :obj:`fmin` routine as shown in the example below: >>> from scipy.optimize import fmin >>> def rosen(x): ... """The Rosenbrock function""" ... return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0) >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2] >>> xopt = fmin(rosen, x0, xtol=1e-8) Optimization terminated successfully. Current function value: 0.000000 Iterations: 339 Function evaluations: 571 >>> print xopt [ 1. 1. 1. 1. 1.] Another optimization algorithm that needs only function calls to find the minimum is Powell's method available as :func:`fmin_powell`. Broyden-Fletcher-Goldfarb-Shanno algorithm (:func:`fmin_bfgs`) -------------------------------------------------------------- In order to converge more quickly to the solution, this routine uses the gradient of the objective function. If the gradient is not given by the user, then it is estimated using first-differences. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method typically requires fewer function calls than the simplex algorithm even when the gradient must be estimated. To demonstrate this algorithm, the Rosenbrock function is again used. The gradient of the Rosenbrock function is the vector: .. math:: :nowrap: \begin{eqnarray*} \frac{\partial f}{\partial x_{j}} & = & \sum_{i=1}^{N}200\left(x_{i}-x_{i-1}^{2}\right)\left(\delta_{i,j}-2x_{i-1}\delta_{i-1,j}\right)-2\left(1-x_{i-1}\right)\delta_{i-1,j}.\\ & = & 200\left(x_{j}-x_{j-1}^{2}\right)-400x_{j}\left(x_{j+1}-x_{j}^{2}\right)-2\left(1-x_{j}\right).\end{eqnarray*} This expression is valid for the interior derivatives. Special cases are .. math:: :nowrap: \begin{eqnarray*} \frac{\partial f}{\partial x_{0}} & = & -400x_{0}\left(x_{1}-x_{0}^{2}\right)-2\left(1-x_{0}\right),\\ \frac{\partial f}{\partial x_{N-1}} & = & 200\left(x_{N-1}-x_{N-2}^{2}\right).\end{eqnarray*} A Python function which computes this gradient is constructed by the code-segment: >>> def rosen_der(x): ... xm = x[1:-1] ... xm_m1 = x[:-2] ... xm_p1 = x[2:] ... der = zeros_like(x) ... der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm) ... der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0]) ... der[-1] = 200*(x[-1]-x[-2]**2) ... return der The calling signature for the BFGS minimization algorithm is similar to :obj:`fmin` with the addition of the *fprime* argument. An example usage of :obj:`fmin_bfgs` is shown in the following example which minimizes the Rosenbrock function. >>> from scipy.optimize import fmin_bfgs >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2] >>> xopt = fmin_bfgs(rosen, x0, fprime=rosen_der) Optimization terminated successfully. Current function value: 0.000000 Iterations: 53 Function evaluations: 65 Gradient evaluations: 65 >>> print xopt [ 1. 1. 1. 1. 1.] Newton-Conjugate-Gradient (:func:`fmin_ncg`) -------------------------------------------- The method which requires the fewest function calls and is therefore often the fastest method to minimize functions of many variables is :obj:`fmin_ncg`. This method is a modified Newton's method and uses a conjugate gradient algorithm to (approximately) invert the local Hessian. Newton's method is based on fitting the function locally to a quadratic form: .. math:: :nowrap: \[ f\left(\mathbf{x}\right)\approx f\left(\mathbf{x}_{0}\right)+\nabla f\left(\mathbf{x}_{0}\right)\cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{0}\right)^{T}\mathbf{H}\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right).\] where :math:`\mathbf{H}\left(\mathbf{x}_{0}\right)` is a matrix of second-derivatives (the Hessian). If the Hessian is positive definite then the local minimum of this function can be found by setting the gradient of the quadratic form to zero, resulting in .. math:: :nowrap: \[ \mathbf{x}_{\textrm{opt}}=\mathbf{x}_{0}-\mathbf{H}^{-1}\nabla f.\] The inverse of the Hessian is evaluted using the conjugate-gradient method. An example of employing this method to minimizing the Rosenbrock function is given below. To take full advantage of the NewtonCG method, a function which computes the Hessian must be provided. The Hessian matrix itself does not need to be constructed, only a vector which is the product of the Hessian with an arbitrary vector needs to be available to the minimization routine. As a result, the user can provide either a function to compute the Hessian matrix, or a function to compute the product of the Hessian with an arbitrary vector. Full Hessian example: ^^^^^^^^^^^^^^^^^^^^^ The Hessian of the Rosenbrock function is .. math:: :nowrap: \begin{eqnarray*} H_{ij}=\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}} & = & 200\left(\delta_{i,j}-2x_{i-1}\delta_{i-1,j}\right)-400x_{i}\left(\delta_{i+1,j}-2x_{i}\delta_{i,j}\right)-400\delta_{i,j}\left(x_{i+1}-x_{i}^{2}\right)+2\delta_{i,j},\\ & = & \left(202+1200x_{i}^{2}-400x_{i+1}\right)\delta_{i,j}-400x_{i}\delta_{i+1,j}-400x_{i-1}\delta_{i-1,j},\end{eqnarray*} if :math:`i,j\in\left[1,N-2\right]` with :math:`i,j\in\left[0,N-1\right]` defining the :math:`N\times N` matrix. Other non-zero entries of the matrix are .. math:: :nowrap: \begin{eqnarray*} \frac{\partial^{2}f}{\partial x_{0}^{2}} & = & 1200x_{0}^{2}-400x_{1}+2,\\ \frac{\partial^{2}f}{\partial x_{0}\partial x_{1}}=\frac{\partial^{2}f}{\partial x_{1}\partial x_{0}} & = & -400x_{0},\\ \frac{\partial^{2}f}{\partial x_{N-1}\partial x_{N-2}}=\frac{\partial^{2}f}{\partial x_{N-2}\partial x_{N-1}} & = & -400x_{N-2},\\ \frac{\partial^{2}f}{\partial x_{N-1}^{2}} & = & 200.\end{eqnarray*} For example, the Hessian when :math:`N=5` is .. math:: :nowrap: \[ \mathbf{H}=\left[\begin{array}{ccccc} 1200x_{0}^{2}-400x_{1}+2 & -400x_{0} & 0 & 0 & 0\\ -400x_{0} & 202+1200x_{1}^{2}-400x_{2} & -400x_{1} & 0 & 0\\ 0 & -400x_{1} & 202+1200x_{2}^{2}-400x_{3} & -400x_{2} & 0\\ 0 & & -400x_{2} & 202+1200x_{3}^{2}-400x_{4} & -400x_{3}\\ 0 & 0 & 0 & -400x_{3} & 200\end{array}\right].\] The code which computes this Hessian along with the code to minimize the function using :obj:`fmin_ncg` is shown in the following example: >>> from scipy.optimize import fmin_ncg >>> def rosen_hess(x): ... x = asarray(x) ... H = diag(-400*x[:-1],1) - diag(400*x[:-1],-1) ... diagonal = zeros_like(x) ... diagonal[0] = 1200*x[0]-400*x[1]+2 ... diagonal[-1] = 200 ... diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:] ... H = H + diag(diagonal) ... return H >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2] >>> xopt = fmin_ncg(rosen, x0, rosen_der, fhess=rosen_hess, avextol=1e-8) Optimization terminated successfully. Current function value: 0.000000 Iterations: 23 Function evaluations: 26 Gradient evaluations: 23 Hessian evaluations: 23 >>> print xopt [ 1. 1. 1. 1. 1.] Hessian product example: ^^^^^^^^^^^^^^^^^^^^^^^^ For larger minimization problems, storing the entire Hessian matrix can consume considerable time and memory. The Newton-CG algorithm only needs the product of the Hessian times an arbitrary vector. As a result, the user can supply code to compute this product rather than the full Hessian by setting the *fhess_p* keyword to the desired function. The *fhess_p* function should take the minimization vector as the first argument and the arbitrary vector as the second argument. Any extra arguments passed to the function to be minimized will also be passed to this function. If possible, using Newton-CG with the hessian product option is probably the fastest way to minimize the function. In this case, the product of the Rosenbrock Hessian with an arbitrary vector is not difficult to compute. If :math:`\mathbf{p}` is the arbitrary vector, then :math:`\mathbf{H}\left(\mathbf{x}\right)\mathbf{p}` has elements: .. math:: :nowrap: \[ \mathbf{H}\left(\mathbf{x}\right)\mathbf{p}=\left[\begin{array}{c} \left(1200x_{0}^{2}-400x_{1}+2\right)p_{0}-400x_{0}p_{1}\\ \vdots\\ -400x_{i-1}p_{i-1}+\left(202+1200x_{i}^{2}-400x_{i+1}\right)p_{i}-400x_{i}p_{i+1}\\ \vdots\\ -400x_{N-2}p_{N-2}+200p_{N-1}\end{array}\right].\] Code which makes use of the *fhess_p* keyword to minimize the Rosenbrock function using :obj:`fmin_ncg` follows: >>> from scipy.optimize import fmin_ncg >>> def rosen_hess_p(x,p): ... x = asarray(x) ... Hp = zeros_like(x) ... Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1] ... Hp[1:-1] = -400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] \ ... -400*x[1:-1]*p[2:] ... Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1] ... return Hp >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2] >>> xopt = fmin_ncg(rosen, x0, rosen_der, fhess_p=rosen_hess_p, avextol=1e-8) Optimization terminated successfully. Current function value: 0.000000 Iterations: 22 Function evaluations: 25 Gradient evaluations: 22 Hessian evaluations: 54 >>> print xopt [ 1. 1. 1. 1. 1.] Least-square fitting (:func:`leastsq`) -------------------------------------- All of the previously-explained minimization procedures can be used to solve a least-squares problem provided the appropriate objective function is constructed. For example, suppose it is desired to fit a set of data :math:`\left\{\mathbf{x}_{i}, \mathbf{y}_{i}\right\}` to a known model, :math:`\mathbf{y}=\mathbf{f}\left(\mathbf{x},\mathbf{p}\right)` where :math:`\mathbf{p}` is a vector of parameters for the model that need to be found. A common method for determining which parameter vector gives the best fit to the data is to minimize the sum of squares of the residuals. The residual is usually defined for each observed data-point as .. math:: :nowrap: \[ e_{i}\left(\mathbf{p},\mathbf{y}_{i},\mathbf{x}_{i}\right)=\left\Vert \mathbf{y}_{i}-\mathbf{f}\left(\mathbf{x}_{i},\mathbf{p}\right)\right\Vert .\] An objective function to pass to any of the previous minization algorithms to obtain a least-squares fit is. .. math:: :nowrap: \[ J\left(\mathbf{p}\right)=\sum_{i=0}^{N-1}e_{i}^{2}\left(\mathbf{p}\right).\] The :obj:`leastsq` algorithm performs this squaring and summing of the residuals automatically. It takes as an input argument the vector function :math:`\mathbf{e}\left(\mathbf{p}\right)` and returns the value of :math:`\mathbf{p}` which minimizes :math:`J\left(\mathbf{p}\right)=\mathbf{e}^{T}\mathbf{e}` directly. The user is also encouraged to provide the Jacobian matrix of the function (with derivatives down the columns or across the rows). If the Jacobian is not provided, it is estimated. An example should clarify the usage. Suppose it is believed some measured data follow a sinusoidal pattern .. math:: :nowrap: \[ y_{i}=A\sin\left(2\pi kx_{i}+\theta\right)\] where the parameters :math:`A,` :math:`k` , and :math:`\theta` are unknown. The residual vector is .. math:: :nowrap: \[ e_{i}=\left|y_{i}-A\sin\left(2\pi kx_{i}+\theta\right)\right|.\] By defining a function to compute the residuals and (selecting an appropriate starting position), the least-squares fit routine can be used to find the best-fit parameters :math:`\hat{A},\,\hat{k},\,\hat{\theta}`. This is shown in the following example: .. plot:: >>> from numpy import * >>> x = arange(0,6e-2,6e-2/30) >>> A,k,theta = 10, 1.0/3e-2, pi/6 >>> y_true = A*sin(2*pi*k*x+theta) >>> y_meas = y_true + 2*random.randn(len(x)) >>> def residuals(p, y, x): ... A,k,theta = p ... err = y-A*sin(2*pi*k*x+theta) ... return err >>> def peval(x, p): ... return p[0]*sin(2*pi*p[1]*x+p[2]) >>> p0 = [8, 1/2.3e-2, pi/3] >>> print array(p0) [ 8. 43.4783 1.0472] >>> from scipy.optimize import leastsq >>> plsq = leastsq(residuals, p0, args=(y_meas, x)) >>> print plsq[0] [ 10.9437 33.3605 0.5834] >>> print array([A, k, theta]) [ 10. 33.3333 0.5236] >>> import matplotlib.pyplot as plt >>> plt.plot(x,peval(x,plsq[0]),x,y_meas,'o',x,y_true) >>> plt.title('Least-squares fit to noisy data') >>> plt.legend(['Fit', 'Noisy', 'True']) >>> plt.show() .. :caption: Least-square fitting to noisy data using .. :obj:`scipy.optimize.leastsq` .. _tutorial-sqlsp: Sequential Least-square fitting with constraints (:func:`fmin_slsqp`) --------------------------------------------------------------------- This module implements the Sequential Least SQuares Programming optimization algorithm (SLSQP). .. math:: :nowrap: \begin{eqnarray*} \min F(x) \\ \text{subject to } & C_j(X) = 0 , &j = 1,...,\text{MEQ}\\ & C_j(x) \geq 0 , &j = \text{MEQ}+1,...,M\\ & XL \leq x \leq XU , &I = 1,...,N. \end{eqnarray*} The following script shows examples for how constraints can be specified. :: """ This script tests fmin_slsqp using Example 14.4 from Numerical Methods for Engineers by Steven Chapra and Raymond Canale. This example maximizes the function f(x) = 2*x*y + 2*x - x**2 - 2*y**2, which has a maximum at x=2,y=1. """ from scipy.optimize import fmin_slsqp from numpy import array, asfarray, finfo,ones, sqrt, zeros def testfunc(d,*args): """ Arguments: d - A list of two elements, where d[0] represents x and d[1] represents y in the following equation. sign - A multiplier for f. Since we want to optimize it, and the scipy optimizers can only minimize functions, we need to multiply it by -1 to achieve the desired solution Returns: 2*x*y + 2*x - x**2 - 2*y**2 """ try: sign = args[0] except: sign = 1.0 x = d[0] y = d[1] return sign*(2*x*y + 2*x - x**2 - 2*y**2) def testfunc_deriv(d,*args): """ This is the derivative of testfunc, returning a numpy array representing df/dx and df/dy """ try: sign = args[0] except: sign = 1.0 x = d[0] y = d[1] dfdx = sign*(-2*x + 2*y + 2) dfdy = sign*(2*x - 4*y) return array([ dfdx, dfdy ],float) from time import time print '\n\n' print "Unbounded optimization. Derivatives approximated." t0 = time() x = fmin_slsqp(testfunc, [-1.0,1.0], args=(-1.0,), iprint=2, full_output=1) print "Elapsed time:", 1000*(time()-t0), "ms" print "Results",x print "\n\n" print "Unbounded optimization. Derivatives provided." t0 = time() x = fmin_slsqp(testfunc, [-1.0,1.0], args=(-1.0,), iprint=2, full_output=1) print "Elapsed time:", 1000*(time()-t0), "ms" print "Results",x print "\n\n" print "Bound optimization. Derivatives approximated." t0 = time() x = fmin_slsqp(testfunc, [-1.0,1.0], args=(-1.0,), eqcons=[lambda x, y: x[0]-x[1] ], iprint=2, full_output=1) print "Elapsed time:", 1000*(time()-t0), "ms" print "Results",x print "\n\n" print "Bound optimization (equality constraints). Derivatives provided." t0 = time() x = fmin_slsqp(testfunc, [-1.0,1.0], fprime=testfunc_deriv, args=(-1.0,), eqcons=[lambda x, y: x[0]-x[1] ], iprint=2, full_output=1) print "Elapsed time:", 1000*(time()-t0), "ms" print "Results",x print "\n\n" print "Bound optimization (equality and inequality constraints)." print "Derivatives provided." t0 = time() x = fmin_slsqp(testfunc,[-1.0,1.0], fprime=testfunc_deriv, args=(-1.0,), eqcons=[lambda x, y: x[0]-x[1] ], ieqcons=[lambda x, y: x[0]-.5], iprint=2, full_output=1) print "Elapsed time:", 1000*(time()-t0), "ms" print "Results",x print "\n\n" def test_eqcons(d,*args): try: sign = args[0] except: sign = 1.0 x = d[0] y = d[1] return array([ x**3-y ]) def test_ieqcons(d,*args): try: sign = args[0] except: sign = 1.0 x = d[0] y = d[1] return array([ y-1 ]) print "Bound optimization (equality and inequality constraints)." print "Derivatives provided via functions." t0 = time() x = fmin_slsqp(testfunc, [-1.0,1.0], fprime=testfunc_deriv, args=(-1.0,), f_eqcons=test_eqcons, f_ieqcons=test_ieqcons, iprint=2, full_output=1) print "Elapsed time:", 1000*(time()-t0), "ms" print "Results",x print "\n\n" def test_fprime_eqcons(d,*args): try: sign = args[0] except: sign = 1.0 x = d[0] y = d[1] return array([ 3.0*(x**2.0), -1.0 ]) def test_fprime_ieqcons(d,*args): try: sign = args[0] except: sign = 1.0 x = d[0] y = d[1] return array([ 0.0, 1.0 ]) print "Bound optimization (equality and inequality constraints)." print "Derivatives provided via functions." print "Constraint jacobians provided via functions" t0 = time() x = fmin_slsqp(testfunc,[-1.0,1.0], fprime=testfunc_deriv, args=(-1.0,), f_eqcons=test_eqcons, f_ieqcons=test_ieqcons, fprime_eqcons=test_fprime_eqcons, fprime_ieqcons=test_fprime_ieqcons, iprint=2, full_output=1) print "Elapsed time:", 1000*(time()-t0), "ms" print "Results",x print "\n\n" Scalar function minimizers -------------------------- Often only the minimum of a scalar function is needed (a scalar function is one that takes a scalar as input and returns a scalar output). In these circumstances, other optimization techniques have been developed that can work faster. Unconstrained minimization (:func:`brent`) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ There are actually two methods that can be used to minimize a scalar function (:obj:`brent` and :func:`golden`), but :obj:`golden` is included only for academic purposes and should rarely be used. The brent method uses Brent's algorithm for locating a minimum. Optimally a bracket should be given which contains the minimum desired. A bracket is a triple :math:`\left(a,b,c\right)` such that :math:`f\left(a\right)>f\left(b\right)>> from scipy.special import j1 >>> from scipy.optimize import fminbound >>> xmin = fminbound(j1, 4, 7) >>> print xmin 5.33144184241 Root finding ------------ Sets of equations ^^^^^^^^^^^^^^^^^ To find the roots of a polynomial, the command :obj:`roots ` is useful. To find a root of a set of non-linear equations, the command :obj:`fsolve` is needed. For example, the following example finds the roots of the single-variable transcendental equation .. math:: :nowrap: \[ x+2\cos\left(x\right)=0,\] and the set of non-linear equations .. math:: :nowrap: \begin{eqnarray*} x_{0}\cos\left(x_{1}\right) & = & 4,\\ x_{0}x_{1}-x_{1} & = & 5.\end{eqnarray*} The results are :math:`x=-1.0299` and :math:`x_{0}=6.5041,\, x_{1}=0.9084` . >>> def func(x): ... return x + 2*cos(x) >>> def func2(x): ... out = [x[0]*cos(x[1]) - 4] ... out.append(x[1]*x[0] - x[1] - 5) ... return out >>> from scipy.optimize import fsolve >>> x0 = fsolve(func, 0.3) >>> print x0 -1.02986652932 >>> x02 = fsolve(func2, [1, 1]) >>> print x02 [ 6.50409711 0.90841421] Scalar function root finding ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ If one has a single-variable equation, there are four different root finder algorithms that can be tried. Each of these root finding algorithms requires the endpoints of an interval where a root is suspected (because the function changes signs). In general :obj:`brentq` is the best choice, but the other methods may be useful in certain circumstances or for academic purposes. Fixed-point solving ^^^^^^^^^^^^^^^^^^^ A problem closely related to finding the zeros of a function is the problem of finding a fixed-point of a function. A fixed point of a function is the point at which evaluation of the function returns the point: :math:`g\left(x\right)=x.` Clearly the fixed point of :math:`g` is the root of :math:`f\left(x\right)=g\left(x\right)-x.` Equivalently, the root of :math:`f` is the fixed_point of :math:`g\left(x\right)=f\left(x\right)+x.` The routine :obj:`fixed_point` provides a simple iterative method using Aitkens sequence acceleration to estimate the fixed point of :math:`g` given a starting point.