# scipy.stats.powerlognorm¶

scipy.stats.powerlognorm()

A power log-normal continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters: x : array-like quantiles q : array-like lower or upper tail probability c,s : array-like shape parameters loc : array-like, optional location parameter (default=0) scale : array-like, optional scale parameter (default=1) size : int or tuple of ints, optional shape of random variates (default computed from input arguments ) moments : string, optional composed of letters [‘mvsk’] specifying which moments to compute where ‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (default=’mv’) powerlognorm.rvs(c,s,loc=0,scale=1,size=1) : random variates powerlognorm.pdf(x,c,s,loc=0,scale=1) : probability density function powerlognorm.cdf(x,c,s,loc=0,scale=1) : cumulative density function powerlognorm.sf(x,c,s,loc=0,scale=1) : survival function (1-cdf — sometimes more accurate) powerlognorm.ppf(q,c,s,loc=0,scale=1) : percent point function (inverse of cdf — percentiles) powerlognorm.isf(q,c,s,loc=0,scale=1) : inverse survival function (inverse of sf) powerlognorm.stats(c,s,loc=0,scale=1,moments=’mv’) : mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’) powerlognorm.entropy(c,s,loc=0,scale=1) : (differential) entropy of the RV. powerlognorm.fit(data,c,s,loc=0,scale=1) : Parameter estimates for powerlognorm data Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = powerlognorm(c,s,loc=0,scale=1) : frozen RV object with the same methods but holding the given shape, location, and scale fixed

Examples

```>>> import matplotlib.pyplot as plt
>>> numargs = powerlognorm.numargs
>>> [ c,s ] = [0.9,]*numargs
>>> rv = powerlognorm(c,s)
```

Display frozen pdf

```>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
```

Check accuracy of cdf and ppf

```>>> prb = powerlognorm.cdf(x,c,s)
>>> h=plt.semilogy(np.abs(x-powerlognorm.ppf(prb,c))+1e-20)
```

Random number generation

```>>> R = powerlognorm.rvs(c,s,size=100)
```

Power log-normal distribution

powerlognorm.pdf(x,c,s) = c/(x*s) * phi(log(x)/s) * (Phi(-log(x)/s))**(c-1) where phi is the normal pdf, and Phi is the normal cdf, and x > 0, s,c > 0.

#### Previous topic

scipy.stats.powerlaw

#### Next topic

scipy.stats.powernorm