SciPy

scipy.cluster.hierarchy.linkage

scipy.cluster.hierarchy.linkage(y, method='single', metric='euclidean')[source]

Performs hierarchical/agglomerative clustering on the condensed distance matrix y.

y must be a \({n \choose 2}\) sized vector where n is the number of original observations paired in the distance matrix. The behavior of this function is very similar to the MATLAB linkage function.

A 4 by \((n-1)\) matrix Z is returned. At the \(i\)-th iteration, clusters with indices Z[i, 0] and Z[i, 1] are combined to form cluster \(n + i\). A cluster with an index less than \(n\) corresponds to one of the \(n\) original observations. The distance between clusters Z[i, 0] and Z[i, 1] is given by Z[i, 2]. The fourth value Z[i, 3] represents the number of original observations in the newly formed cluster.

The following linkage methods are used to compute the distance \(d(s, t)\) between two clusters \(s\) and \(t\). The algorithm begins with a forest of clusters that have yet to be used in the hierarchy being formed. When two clusters \(s\) and \(t\) from this forest are combined into a single cluster \(u\), \(s\) and \(t\) are removed from the forest, and \(u\) is added to the forest. When only one cluster remains in the forest, the algorithm stops, and this cluster becomes the root.

A distance matrix is maintained at each iteration. The d[i,j] entry corresponds to the distance between cluster \(i\) and \(j\) in the original forest.

At each iteration, the algorithm must update the distance matrix to reflect the distance of the newly formed cluster u with the remaining clusters in the forest.

Suppose there are \(|u|\) original observations \(u[0], \ldots, u[|u|-1]\) in cluster \(u\) and \(|v|\) original objects \(v[0], \ldots, v[|v|-1]\) in cluster \(v\). Recall \(s\) and \(t\) are combined to form cluster \(u\). Let \(v\) be any remaining cluster in the forest that is not \(u\).

The following are methods for calculating the distance between the newly formed cluster \(u\) and each \(v\).

  • method=’single’ assigns

    \[d(u,v) = \min(dist(u[i],v[j]))\]

    for all points \(i\) in cluster \(u\) and \(j\) in cluster \(v\). This is also known as the Nearest Point Algorithm.

  • method=’complete’ assigns

    \[d(u, v) = \max(dist(u[i],v[j]))\]

    for all points \(i\) in cluster u and \(j\) in cluster \(v\). This is also known by the Farthest Point Algorithm or Voor Hees Algorithm.

  • method=’average’ assigns

    \[d(u,v) = \sum_{ij} \frac{d(u[i], v[j])} {(|u|*|v|)}\]

    for all points \(i\) and \(j\) where \(|u|\) and \(|v|\) are the cardinalities of clusters \(u\) and \(v\), respectively. This is also called the UPGMA algorithm.

  • method=’weighted’ assigns

    \[d(u,v) = (dist(s,v) + dist(t,v))/2\]

    where cluster u was formed with cluster s and t and v is a remaining cluster in the forest. (also called WPGMA)

  • method=’centroid’ assigns

    \[dist(s,t) = ||c_s-c_t||_2\]

    where \(c_s\) and \(c_t\) are the centroids of clusters \(s\) and \(t\), respectively. When two clusters \(s\) and \(t\) are combined into a new cluster \(u\), the new centroid is computed over all the original objects in clusters \(s\) and \(t\). The distance then becomes the Euclidean distance between the centroid of \(u\) and the centroid of a remaining cluster \(v\) in the forest. This is also known as the UPGMC algorithm.

  • method=’median’ assigns \(d(s,t)\) like the centroid method. When two clusters \(s\) and \(t\) are combined into a new cluster \(u\), the average of centroids s and t give the new centroid \(u\). This is also known as the WPGMC algorithm.

  • method=’ward’ uses the Ward variance minimization algorithm. The new entry \(d(u,v)\) is computed as follows,

    \[d(u,v) = \sqrt{\frac{|v|+|s|} {T}d(v,s)^2 + \frac{|v|+|t|} {T}d(v,t)^2 - \frac{|v|} {T}d(s,t)^2}\]

    where \(u\) is the newly joined cluster consisting of clusters \(s\) and \(t\), \(v\) is an unused cluster in the forest, \(T=|v|+|s|+|t|\), and \(|*|\) is the cardinality of its argument. This is also known as the incremental algorithm.

Warning: When the minimum distance pair in the forest is chosen, there may be two or more pairs with the same minimum distance. This implementation may chose a different minimum than the MATLAB version.

Parameters:

y : ndarray

A condensed or redundant distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that pdist returns. Alternatively, a collection of \(m\) observation vectors in n dimensions may be passed as an \(m\) by \(n\) array.

method : str, optional

The linkage algorithm to use. See the Linkage Methods section below for full descriptions.

metric : str or function, optional

The distance metric to use. See the distance.pdist function for a list of valid distance metrics. The customized distance can also be used. See the distance.pdist function for details.

Returns:

Z : ndarray

The hierarchical clustering encoded as a linkage matrix.