SciPy

scipy.optimize.differential_evolution

scipy.optimize.differential_evolution(func, bounds, args=(), strategy='best1bin', maxiter=None, popsize=15, tol=0.01, mutation=(0.5, 1), recombination=0.7, seed=None, callback=None, disp=False, polish=True, init='latinhypercube')[source]

Finds the global minimum of a multivariate function. Differential Evolution is stochastic in nature (does not use gradient methods) to find the minimium, and can search large areas of candidate space, but often requires larger numbers of function evaluations than conventional gradient based techniques.

The algorithm is due to Storn and Price [R114].

Parameters:

func : callable

The objective function to be minimized. Must be in the form f(x, *args), where x is the argument in the form of a 1-D array and args is a tuple of any additional fixed parameters needed to completely specify the function.

bounds : sequence

Bounds for variables. (min, max) pairs for each element in x, defining the lower and upper bounds for the optimizing argument of func. It is required to have len(bounds) == len(x). len(bounds) is used to determine the number of parameters in x.

args : tuple, optional

Any additional fixed parameters needed to completely specify the objective function.

strategy : str, optional

The differential evolution strategy to use. Should be one of:

  • ‘best1bin’
  • ‘best1exp’
  • ‘rand1exp’
  • ‘randtobest1exp’
  • ‘best2exp’
  • ‘rand2exp’
  • ‘randtobest1bin’
  • ‘best2bin’
  • ‘rand2bin’
  • ‘rand1bin’

The default is ‘best1bin’.

maxiter : int, optional

The maximum number of times the entire population is evolved. The maximum number of function evaluations is: maxiter * popsize * len(x)

popsize : int, optional

A multiplier for setting the total population size. The population has popsize * len(x) individuals.

tol : float, optional

When the mean of the population energies, multiplied by tol, divided by the standard deviation of the population energies is greater than 1 the solving process terminates: convergence = mean(pop) * tol / stdev(pop) > 1

mutation : float or tuple(float, float), optional

The mutation constant. If specified as a float it should be in the range [0, 2]. If specified as a tuple (min, max) dithering is employed. Dithering randomly changes the mutation constant on a generation by generation basis. The mutation constant for that generation is taken from U[min, max). Dithering can help speed convergence significantly. Increasing the mutation constant increases the search radius, but will slow down convergence.

recombination : float, optional

The recombination constant, should be in the range [0, 1]. Increasing this value allows a larger number of mutants to progress into the next generation, but at the risk of population stability.

seed : int or np.random.RandomState, optional

If seed is not specified the np.RandomState singleton is used. If seed is an int, a new np.random.RandomState instance is used, seeded with seed. If seed is already a np.random.RandomState instance, then that np.random.RandomState instance is used. Specify seed for repeatable minimizations.

disp : bool, optional

Display status messages

callback : callable, callback(xk, convergence=val), optional:

A function to follow the progress of the minimization. xk is the current value of x0. val represents the fractional value of the population convergence. When val is greater than one the function halts. If callback returns True, then the minimization is halted (any polishing is still carried out).

polish : bool, optional

If True (default), then scipy.optimize.minimize with the L-BFGS-B method is used to polish the best population member at the end, which can improve the minimization slightly.

init : string, optional

Specify how the population initialization is performed. Should be one of:

  • ‘latinhypercube’
  • ‘random’

The default is ‘latinhypercube’. Latin Hypercube sampling tries to maximize coverage of the available parameter space. ‘random’ initializes the population randomly - this has the drawback that clustering can occur, preventing the whole of parameter space being covered.

Returns:

res : OptimizeResult

The optimization result represented as a OptimizeResult object. Important attributes are: x the solution array, success a Boolean flag indicating if the optimizer exited successfully and message which describes the cause of the termination. See OptimizeResult for a description of other attributes. If polish was employed, then OptimizeResult also contains the jac attribute.

Notes

Differential evolution is a stochastic population based method that is useful for global optimization problems. At each pass through the population the algorithm mutates each candidate solution by mixing with other candidate solutions to create a trial candidate. There are several strategies [R115] for creating trial candidates, which suit some problems more than others. The ‘best1bin’ strategy is a good starting point for many systems. In this strategy two members of the population are randomly chosen. Their difference is used to mutate the best member (the best in best1bin), \(b_0\), so far:

\[b' = b_0 + mutation * (population[rand0] - population[rand1])\]

A trial vector is then constructed. Starting with a randomly chosen ‘i’th parameter the trial is sequentially filled (in modulo) with parameters from b’ or the original candidate. The choice of whether to use b’ or the original candidate is made with a binomial distribution (the ‘bin’ in ‘best1bin’) - a random number in [0, 1) is generated. If this number is less than the recombination constant then the parameter is loaded from b’, otherwise it is loaded from the original candidate. The final parameter is always loaded from b’. Once the trial candidate is built its fitness is assessed. If the trial is better than the original candidate then it takes its place. If it is also better than the best overall candidate it also replaces that. To improve your chances of finding a global minimum use higher popsize values, with higher mutation and (dithering), but lower recombination values. This has the effect of widening the search radius, but slowing convergence.

New in version 0.15.0.

References

[R114](1, 2) Storn, R and Price, K, Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, 1997, 11, 341 - 359.
[R115](1, 2) http://www1.icsi.berkeley.edu/~storn/code.html
[R116]http://en.wikipedia.org/wiki/Differential_evolution

Examples

Let us consider the problem of minimizing the Rosenbrock function. This function is implemented in rosen in scipy.optimize.

>>> from scipy.optimize import rosen, differential_evolution
>>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
>>> result = differential_evolution(rosen, bounds)
>>> result.x, result.fun
(array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)

Next find the minimum of the Ackley function (http://en.wikipedia.org/wiki/Test_functions_for_optimization).

>>> from scipy.optimize import differential_evolution
>>> import numpy as np
>>> def ackley(x):
...     arg1 = -0.2 * np.sqrt(0.5 * (x[0] ** 2 + x[1] ** 2))
...     arg2 = 0.5 * (np.cos(2. * np.pi * x[0]) + np.cos(2. * np.pi * x[1]))
...     return -20. * np.exp(arg1) - np.exp(arg2) + 20. + np.e
>>> bounds = [(-5, 5), (-5, 5)]
>>> result = differential_evolution(ackley, bounds)
>>> result.x, result.fun
(array([ 0.,  0.]), 4.4408920985006262e-16)

Previous topic

scipy.optimize.brute

Next topic

scipy.optimize.rosen