scipy.linalg.solveh_banded¶

scipy.linalg.solveh_banded(ab, b, overwrite_ab=False, overwrite_b=False, lower=False, check_finite=True)[source]

Solve equation a x = b. a is Hermitian positive-definite banded matrix.

The matrix a is stored in ab either in lower diagonal or upper diagonal ordered form:

ab[u + i - j, j] == a[i,j] (if upper form; i <= j) ab[ i - j, j] == a[i,j] (if lower form; i >= j)

Example of ab (shape of a is (6,6), u =2):

```upper form:
*   *   a02 a13 a24 a35
*   a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 *   *```

Cells marked with * are not used.

Parameters : ab : (u + 1, M) array_like Banded matrix b : (M,) or (M, K) array_like Right-hand side overwrite_ab : bool, optional Discard data in ab (may enhance performance) overwrite_b : bool, optional Discard data in b (may enhance performance) lower : bool, optional Is the matrix in the lower form. (Default is upper form) check_finite : boolean, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. x : (M,) or (M, K) ndarray The solution to the system a x = b. Shape of return matches shape of b.

Previous topic

scipy.linalg.solve_banded

Next topic

scipy.linalg.solve_triangular