# scipy.sparse.linalg.spsolve¶

scipy.sparse.linalg.spsolve(A, b, permc_spec=None, use_umfpack=True)[source]

Solve the sparse linear system Ax=b, where b may be a vector or a matrix.

Parameters : A : ndarray or sparse matrix The square matrix A will be converted into CSC or CSR form b : ndarray or sparse matrix The matrix or vector representing the right hand side of the equation. If a vector, b.size must permc_spec : str, optional How to permute the columns of the matrix for sparsity preservation. (default: ‘COLAMD’) NATURAL: natural ordering. MMD_ATA: minimum degree ordering on the structure of A^T A. MMD_AT_PLUS_A: minimum degree ordering on the structure of A^T+A. COLAMD: approximate minimum degree column ordering use_umfpack : bool (optional) if True (default) then use umfpack for the solution. This is only referenced if b is a vector. x : ndarray or sparse matrix the solution of the sparse linear equation. If b is a vector, then x is a vector of size A.shape[1] If b is a matrix, then x is a matrix of size (A.shape[1], b.shape[1])

Notes

For solving the matrix expression AX = B, this solver assumes the resulting matrix X is sparse, as is often the case for very sparse inputs. If the resulting X is dense, the construction of this sparse result will be relatively expensive. In that case, consider converting A to a dense matrix and using scipy.linalg.solve or its variants.

#### Previous topic

scipy.sparse.linalg.expm

#### Next topic

scipy.sparse.linalg.factorized