This is documentation for an old release of SciPy (version 0.11.0). Read this page in the documentation of the latest stable release (version 1.15.1).
Compute the Cholesky decomposition of a matrix.
Returns the Cholesky decomposition, or
of a Hermitian positive-definite matrix A.
Parameters : | a : ndarray, shape (M, M)
lower : bool
overwrite_a : bool
|
---|---|
Returns : | c : ndarray, shape (M, M)
|
Raises : | LinAlgError : if decomposition fails. |
Examples
>>> from scipy import array, linalg, dot
>>> a = array([[1,-2j],[2j,5]])
>>> L = linalg.cholesky(a, lower=True)
>>> L
array([[ 1.+0.j, 0.+0.j],
[ 0.+2.j, 1.+0.j]])
>>> dot(L, L.T.conj())
array([[ 1.+0.j, 0.-2.j],
[ 0.+2.j, 5.+0.j]])