numpy.random.choice¶
- numpy.random.choice(a, size=None, replace=True, p=None)¶
Generates a random sample from a given 1-D array
New in version 1.7.0.
Parameters : a : 1-D array-like or int
If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a was np.arange(n)
size : int or tuple of ints, optional
Output shape. Default is None, in which case a single value is returned.
replace : boolean, optional
Whether the sample is with or without replacement
p : 1-D array-like, optional
The probabilities associated with each entry in a. If not given the sample assumes a uniform distribtion over all entries in a.
Returns : samples : 1-D ndarray, shape (size,)
The generated random samples
Raises : ValueError
If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size
See also
Examples
Generate a uniform random sample from np.arange(5) of size 3:
>>> np.random.choice(5, 3) array([0, 3, 4]) >>> #This is equivalent to np.random.randint(0,5,3)
Generate a non-uniform random sample from np.arange(5) of size 3:
>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0])
Generate a uniform random sample from np.arange(5) of size 3 without replacement:
>>> np.random.choice(5, 3, replace=False) array([3,1,0]) >>> #This is equivalent to np.random.shuffle(np.arange(5))[:3]
Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:
>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0])
Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:
>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], dtype='|S11')