Compute the 2dimensional inverse discrete Fourier Transform.
This function computes the inverse of the 2dimensional discrete Fourier Transform over any number of axes in an Mdimensional array by means of the Fast Fourier Transform (FFT). In other words, ifft2(fft2(a)) == a to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the input array.
The input, analogously to ifft, should be ordered in the same way as is returned by fft2, i.e. it should have the term for zero frequency in the loworder corner of the two axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of both axes, in order of decreasingly negative frequency.
Parameters :  a : array_like
s : sequence of ints, optional
axes : sequence of ints, optional


Returns :  out : complex ndarray

Raises :  ValueError :
IndexError :

See also
Notes
ifft2 is just ifftn with a different default for axes.
See ifftn for details and a plotting example, and numpy.fft for definition and conventions used.
Zeropadding, analogously with ifft, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before ifft2 is called.
Examples
>>> a = 4 * np.eye(4)
>>> np.fft.ifft2(a)
array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
[ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])