Return a sorted copy of an array.
Parameters:  a : array_like
axis : int or None, optional
kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
order : list, optional


Returns:  sorted_array : ndarray

See also
Notes
The various sorting algorithms are characterized by their average speed, worst case performance, work space size, and whether they are stable. A stable sort keeps items with the same key in the same relative order. The three available algorithms have the following properties:
kind  speed  worst case  work space  stable 

‘quicksort’  1  O(n^2)  0  no 
‘mergesort’  2  O(n*log(n))  ~n/2  yes 
‘heapsort’  3  O(n*log(n))  0  no 
All the sort algorithms make temporary copies of the data when sorting along any but the last axis. Consequently, sorting along the last axis is faster and uses less space than sorting along any other axis.
The sort order for complex numbers is lexicographic. If both the real and imaginary parts are nonnan then the order is determined by the real parts except when they are equal, in which case the order is determined by the imaginary parts.
Previous to numpy 1.4.0 sorting real and complex arrays containing nan values led to undefined behaviour. In numpy versions >= 1.4.0 nan values are sorted to the end. The extended sort order is:
 Real: [R, nan]
 Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]
where R is a nonnan real value. Complex values with the same nan placements are sorted according to the nonnan part if it exists. Nonnan values are sorted as before.
Examples
>>> a = np.array([[1,4],[3,1]])
>>> np.sort(a) # sort along the last axis
array([[1, 4],
[1, 3]])
>>> np.sort(a, axis=None) # sort the flattened array
array([1, 1, 3, 4])
>>> np.sort(a, axis=0) # sort along the first axis
array([[1, 1],
[3, 4]])
Use the order keyword to specify a field to use when sorting a structured array:
>>> dtype = [('name', 'S10'), ('height', float), ('age', int)]
>>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),
... ('Galahad', 1.7, 38)]
>>> a = np.array(values, dtype=dtype) # create a structured array
>>> np.sort(a, order='height')
array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
('Lancelot', 1.8999999999999999, 38)],
dtype=[('name', 'S10'), ('height', '<f8'), ('age', '<i4')])
Sort by age, then height if ages are equal:
>>> np.sort(a, order=['age', 'height'])
array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38),
('Arthur', 1.8, 41)],
dtype=[('name', 'S10'), ('height', '<f8'), ('age', '<i4')])