Apply a function repeatedly over multiple axes.
func is called as res = func(a, axis), where axis is the first element of axes. The result res of the function call must have either the same dimensions as a or one less dimension. If res has one less dimension than a, a dimension is inserted before axis. The call to func is then repeated for each axis in axes, with res as the first argument.
Parameters:  func : function
a : ndarray
axes : array_like


Returns:  val : ndarray

See also
Examples
>>> a = np.arange(24).reshape(2,3,4)
>>> a
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
Sum over axes 0 and 2. The result has same number of dimensions as the original array:
>>> np.apply_over_axes(np.sum, a, [0,2])
array([[[ 60],
[ 92],
[124]]])