numpy.poly1d¶
- class numpy.poly1d(c_or_r, r=0, variable=None)[source]¶
- A one-dimensional polynomial class. - A convenience class, used to encapsulate “natural” operations on polynomials so that said operations may take on their customary form in code (see Examples). - Parameters: - c_or_r : array_like - The polynomial’s coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial’s roots (values where the polynomial evaluates to 0). For example, poly1d([1, 2, 3]) returns an object that represents  , whereas poly1d([1, 2, 3], True) returns
one that represents , whereas poly1d([1, 2, 3], True) returns
one that represents . .- r : bool, optional - If True, c_or_r specifies the polynomial’s roots; the default is False. - variable : str, optional - Changes the variable used when printing p from x to variable (see Examples). - Examples - Construct the polynomial  : :- >>> p = np.poly1d([1, 2, 3]) >>> print np.poly1d(p) 2 1 x + 2 x + 3 - Evaluate the polynomial at  : :- >>> p(0.5) 4.25 - Find the roots: - >>> p.r array([-1.+1.41421356j, -1.-1.41421356j]) >>> p(p.r) array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) - These numbers in the previous line represent (0, 0) to machine precision - Show the coefficients: - >>> p.c array([1, 2, 3]) - Display the order (the leading zero-coefficients are removed): - >>> p.order 2 - Show the coefficient of the k-th power in the polynomial (which is equivalent to p.c[-(i+1)]): - >>> p[1] 2 - Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder): - >>> p * p poly1d([ 1, 4, 10, 12, 9]) - >>> (p**3 + 4) / p (poly1d([ 1., 4., 10., 12., 9.]), poly1d([ 4.])) - asarray(p) gives the coefficient array, so polynomials can be used in all functions that accept arrays: - >>> p**2 # square of polynomial poly1d([ 1, 4, 10, 12, 9]) - >>> np.square(p) # square of individual coefficients array([1, 4, 9]) - The variable used in the string representation of p can be modified, using the variable parameter: - >>> p = np.poly1d([1,2,3], variable='z') >>> print p 2 1 z + 2 z + 3 - Construct a polynomial from its roots: - >>> np.poly1d([1, 2], True) poly1d([ 1, -3, 2]) - This is the same polynomial as obtained by: - >>> np.poly1d([1, -1]) * np.poly1d([1, -2]) poly1d([ 1, -3, 2]) - Attributes - coeffs - order - variable - Methods - __call__(val) - deriv([m]) - Return a derivative of this polynomial. - integ([m, k]) - Return an antiderivative (indefinite integral) of this polynomial. 
